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Abstract We provide an approximate analysis of the tran-

sient sojourn time for a processor sharing queue with time

varying arrival and service rates, where the load can vary over

time, including periods of overload. Using the same asymp-

totic technique as uniform acceleration as demonstrated in

[12] and [13], we obtain fluid and diffusion limits for the

sojourn time of the Mt/Mt/1 processor-sharing queue. Our

analysis is enabled by the introduction of a “virtual customer”

which differs from the notion of a “tagged customer” in that

the former has no effect on the processing time of the other

customers in the system. Our analysis generalizes to non-

exponential service and interarrival times, when the fluid and

diffusion limits for the queueing process are known.

Keywords Processor sharing · Fluid limits · Diffusion

limits · Transient behavior · Time-varying queues · Uniform

acceleration · Sojourn times · Virtual customers.

1. Introduction

The processor sharing discipline has been used to model

many aspects of computer systems, including the quantum-

based time sharing of the CPU by computer operating

systems (see Kleinrock [10]) and (elastic) traffic modeling

in communication networks (see Nunez-Queija [16], Roberts
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[18] and Bonald and Proutière [2]) and scheduling in Web

servers [6].

Under processor sharing (PS), the service capacity is at

all times equally shared among all the jobs present. If there

are n jobs present, each one receives a fraction 1/n of the

total service capacity. This scheduling policy induces simple

formulas in the case of an underloaded (stable) M/G/1/PS

queue. For example, in Kleinrock [10] it is shown that

lim
t→∞ P(Q(t) = n) =

{
(1 − ρ)ρn ifρ < 1,

0 ifρ ≥ 1,
(1.1)

where Q(t) denotes the number of jobs in the system at time

t . Moreover, ρ = λ · E[S] where S denotes the random size

(service requirement) of a job and λ is the mean Poisson

customer arrival rate. Furthermore, the expected sojourn time

for a job with size (service requirement) x is known to be

E[T (x)] = x

1 − ρ
.

The popularity of the PS queue is due in large part to Klein-

rock [10] who uses processor-sharing as an approximation

of round-robin quantum-based scheduling. This is work that

primarily deals with a stationary queue having load ρ < 1.

The survey papers of Yashkov [23, 24] provide a detailed

overview of the results on stationary PS queues, including

results by Coffman, Muntz and Trotter [4], Morrison [15],

Guillemin and Boyer [7]. All these papers deal with various

aspects of the sojourn time distribution for the M/M/1/PS.

These sojourn time analyses are often based on the notion

of tracking a “tagged customer” who arrives into the system

and interacts with the customers there. Masuyama and Takine

[14] obtain similar results for a MAP/M/1/PS queue. In the

early 1980’s Ott [17], Schassberger [19] and Yashkov [22]
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all derive independently the Laplace-Stieltjes transform

(LST) for the sojourn time in the M/G/1/PS queue. Zwart

and Boxma [25] show how to eliminate the contour integrals

in the above results and obtain a more explicit formula, which

they use to efficiently compute the moments of sojourn time.

They also prove that for heavy-tailed service demand distri-

butions, the sojourn time distribution has the same tail index

as the service distribution.

While stationary behavior of the M/G/1/PS queue is well-

studied, it is important to understand the transient behavior

of the M/G/1/PS queue as well. When a job arrives into the

system, the job finds a specific number of existing jobs with

existing remaining sizes (remaining service requirements),

not a steady-state distribution. Initial work on the M/M/l/PS

transient queue was done by Sengupta and Jagerman [21]

who produce Laplace transforms for the transient behavior.

Similar work on the M/G/l/PS transient queue was done later

by Kitaev [9]. This was followed by a key paper in the area of

transient analysis of the M/G/1/PS queue by Jean-Marie and

Robert [8] who provide a fluid approximation for the case

of fixed load ρ > 1. For this overloaded regime, they derive

the asymptotic growth rate for the number of customers after

t time units of overload (for large t), where this rate is the

solution to a simple integral Equation. They also derive the

asymptotic behavior of residual service times. These results

were generalized by Chen, Kella, and Weiss [3] who also

develop a fluid approximation, based on a time and space

scaling. They too consider fixed load ρ and examine three

regimes: ρ < 1, ρ = 1, and ρ > 1. They also allow for gen-

eral conditions on what the tagged arrival sees in terms of the

number of jobs found in the system with their residual job

sizes.

There are two areas that the prior work on transient anal-

ysis does not address, and these form the primary contribu-

tions of this paper. First, the prior work all deals with a fixed
load ρ. In practice there are short-term fluctuations in load,

which have a dramatic impact on the sojourn time, and are

not captured by the existing constant-rate models. To moti-

vate the importance of capturing load fluctuations, consider

the performance graph of an Apache web server shown in

Figure 1, taken from [20]. In this figure, instantaneous load

fluctuates between 1.2 and 0.2, where the time-average load

is 0.7. As the authors in [20] point out, steady-state queueing

formulas for load 0.7 result in a very poor prediction of mean

sojourn time (or equivalently, the mean response time). The

analysis techniques that we introduce in this paper result in

simple formulas that capture the effect of fluctuating loads

and rates on transient sojourn time. Second, the prior work

provides only a first-order (mean) approximation of sojourn

time. Since the fluid approximations correspond to a strong

law of large numbers, it is natural to extend these results to

diffusion limits, which correspond to central limit theorems.

We thus strengthen the prior work by using diffusion limits,
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Fig. 1 Response time (averaged over 1 second intervals) for an Apache
web server servicing HTTP requests, where load fluctuates between
ρ = 1.2 and ρ = 0.2 (for 25 seconds each).

which we rigorously establish for exponential service distri-

butions. This provides us with estimations of the standard

deviations about the mean and enables us to estimate the

distribution of sojourn time, rather than just its mean.

In this paper, we provide fluid and diffusion limits for

the transient sojourn time of an Mt/Mt/1/PS queue. Using

this extended Kendall notation, the Mt for an arrival process

denotes a non-homogeneous Poisson process. Similarly, the

Mt for a service time distribution denotes the times between

jumps for a non-homogeneous Poisson process. Our primary

technique is uniform acceleration [13, 12], however we use

it differently from how it has been used in the past. First and

foremost, we are for the first time applying uniform accelera-

tion to the sojourn time of a processor-sharing queue. Second,

practical considerations have motivated us to extend the tra-

ditional uniform acceleration analysis and allow for general

starting conditions in terms of the number of jobs seen by

an arrival. Third, we introduce the notion of a “virtual cus-

tomer,” which differs from the traditional “tagged customer”

in that the virtual customer has no effect on the experience

of the other customers in the system.

The sojourn time T(x) of the virtual customer with a job

of size x can be determined from the following formula

x =
∫ T (x)

0

dt

1 + Q(t)
. (1.2)

This would be the exact sojourn time of a “real customer”

if the effect of the virtual customer on Q(t) were taken into

account. Such a job arriving at time 0 increases the number

of jobs in the system by 1, and is served at the instantaneous

rate 1/(1 + Q(t)) at time t .
Uniform acceleration is an asymptotic analysis method

where we scale the arrival and service rates by a factor η.

In the context of formula (1.2), this means that λ(t) =⇒
ηλ(t) and μ(t) =⇒ ημ(t) and the corresponding queueing
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process is referred to as Qη(t), where we now take the limit as

η → ∞.

It is not clear why uniform acceleration should tell us

anything about the original unscaled system. For example, in

the case of a stationary queue, scaling the arrival and service

rates each by a factor of η should lead to a drop in the mean

sojourn time by a factor of η. By contrast, for the case of

transient (nonstationary) queues, we prove in Theorem 2.4,

that we can induce an asymptotic analysis on T(x) in terms

of our asymptotic analysis of Qη(t). We also provide some

underlying motivation for why the sojourn time obtained in

the accelerated regime is indicative of what happens in the

original (non-accelerated) system for the transient queue.

Our derivation of the sojourn time behavior of the

Mt/Mt/1/PS queue leads to some surprising results. First,

we find that under systems with time-fluctuating load, the

expected slowdown experienced by a job (its sojourn time

divided by its size) is no longer constant. This is in sharp con-

trast to the classical M/G/1/PS queue with fixed load ρ < 1,

which is characterized by constant slowdown (which is also

referred to as “fairness” [1]). Second, in studying the sojourn

time distribution, we observe a point mass. This indicates

that for a given fixed job size, we can explicitly determine a

point at which the distribution has positive mass.

We end the paper with an exploration of numerical ex-

amples that show how well the asymptotic results for the

Mt/Mt/1/PS queue approximate the mean, variance, and dis-

tribution of these sojourn times.

2. Uniform acceleration for the Mt/Mt/1/PS queue

Since the behavior of the Mt/Mt/1 queueing process

is independent of any work conserving queueing disci-

pline, the sample path behavior of the Mt/Mt/1/FIFO and

Mt/Mt/1/PS queues are identical. We can apply the asymp-

totic results to this system as found in Massey [13]. We use

the asymptotic analysis of uniform acceleration, whereby we

scale the time dependent arrival and service rates, λ(t) and

μ(t) respectively, by the same parameter η > 0. This results

in an Mt/Mt/1 queueing process with arrival and service rates

ηλ(t) and ημ(t), respectively, and we denote this queueing

process as {Qη(t)|t ≥ 0}. We then analyze the behavior of

this process asymptotically by letting our scale factor η be-

come very large.

We start by recalling the following asymptotic analysis for

the transition probabilities of the Mt/Mt/1 queueing process:

Theorem 2.1 (Massey, 1985). If λ and μ are continuously
differentiable functions of t , we have ρ∗(t) < 1 where

ρ∗(t) ≡ sup
0≤s<t

∫ t
s λ(r )dr∫ t
s μ(r )dr

, (2.1)

and ρ(t) = λ(t)/μ(t), then

P(Qη(t) = n) = (1 − ρ(t))ρ(t)n

+ ρ ′(t)
ημ(t)

(
ρ(t)

(1 − ρ(t))2
− n(n + 1)

2

)
ρ(t)n−1 + O

(
1

η2

)
,

(2.2)

as η → ∞. Moreover, if ρ∗(t) ≥ 1, then

lim
η→∞ P(Qη(t) = n) = 0 (2.3)

for all t > 0.

From this analysis there are three different regimes of

asymptotic behavior that are labeled as follows: underloaded

(ρ∗(t) < 1), critically loaded (ρ∗(t) = 1) and overloaded

(ρ∗(t) > 1). Observe that the parameter that determines these

asymptotic regimes is not given by ρ(t). Also, observe that

the results of this theorem are non-trivial (non-zero) only for

the underloaded case.

Mandelbaum and Massey [12] apply the analysis of uni-

form acceleration directly to the random sample path behav-

ior of the Mt/Mt/1 queue.

Theorem 2.2 (Mandelbaum and Massey, 1995). If λ and
μ are locally integrable functions and Qη(0) = Q(0) for
all η > 0, then limη→∞ Qη(t)/η = Q(0)(t) a.s. uniformly
on compact sets, where

Q(0)(t) =
∫ t

0

(λ(s)−μ(s))ds− inf
0≤s≤t

∫ s

0

(λ(r )−μ(r ))dr. (2.4)

Moreover, limη→∞
√

η

(
Qη(t)/η − Q(0)(t)

)
d= Q(1)(t),

where

Q(1)(t) = W

(∫ t

0

(λ(s) + μ(s))ds

)
− inf

s∈�(t)
W

(∫ s

0

(λ(r ) + μ(r ))dr

)
,

(2.5)

{W (t)|t ≥ 0} is standard (mean 0, variance t) Brownian
motion, and finally

�(t) =
{

s
∣∣∣∫ t

s
(λ(r ) − μ(r ))dr = Q(0)(t) and 0 ≤ s ≤ t

}
.

(2.6)

The results of Theorem 2.1 are non-zero precisely when the

results of Theorem 2.2 are zero. Conversely, the results of

Theorem 2.2 are non-zero when the results of Theorem 2.1
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are zero. Thus these two types of uniform acceleration anal-

ysis literally complement each other.

The deterministic process {Q(0)(t)|t ≥ 0} is called the

Mt/Mt/1 queueing fluid limit. Observe that Q(0)(t) > 0 if

and only if ρ∗(t) > 1. The fluid limit is then an estimate of

the backlog for the original (non accelerated, η = 1) queue-

ing process. Notice that since we always have ρ(t) ≤ ρ∗(t),
it is possible to have ρ(t) < 1 (or λ(t) < μ(t)), but still have

ρ∗(t) ≥ 1. This is due to a backlog of jobs, acquired during a

period of overloading in the past, that have not been flushed

out of the queue by time t .
The random process {Q(1)(t)|t ≥ 0} is the first order “cor-

rection term” to the fluid limit and gives a sense of how the

original queueing process deviates from the fluid model. For

simplicity, we refer to it as the Mt/Mt/1 queueing diffusion
limit. Technically, it may not be a diffusion since the sample

paths at fixed time points may have a non-zero probability

of a discontinuity. However, these discontinuities only occur

during transitions from the overloaded regime to the under-

loaded one.

Now we generalize these limit theorems to the extended
case of a uniformly accelerated initial load where we set

Qη(0) = η · Q(0). Below we have our extended fluid and

diffusion limits.

Theorem 2.3. If Qη(0) = η · Q(0), then

Q(0)(t) = Q(0) +
∫ t

0

(λ(s) − μ(s))ds

− inf
0≤s≤t

(
Q(0) +

∫ s

0

(λ(r ) − μ(r ))dr

)
∧ 0, (2.7)

and

Q(1)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(1)
0 (t)

if Q(0) < sup0≤s≤t

∫ s
0

(μ(r ) − λ(r )) dr,

Q(1)
0 (t) ∨ W

(∫ t

0

(λ(s) + μ(s))ds

)
if Q(0) = sup0≤s≤t

∫ s
0

(μ(r ) − λ(r )) dr,

W

(∫ t

0

(λ(s) + μ(s))ds

)
if Q(0) > sup0≤s≤t

∫ s
0

(μ(r ) − λ(r )) dr,

(2.8)

where
{

Q(1)
0 (t) | t ≥ 0

}
is the Mt/Mt/1 queueing diffusion

limit given by (2.5) when Q(0) = 0.

Proof: Both limits follow from the fact that the process

{Qη(t) | t ≥ 0 } can be written as

Qη(t) = Zη(t) − inf
0≤s≤t

Zη(s) ∧ 0 = max
(
Qη

0(t), Zη(t)
)
,

(2.9)

where
{

Qη

0(t) | t ≥ 0
}

is another Mt/Mt/1 queueing process

with the same arrival and service rates but with Q(0) = 0,

and

Zη(t) = η · Q(0) + �1

(∫ t

0

ηλ(s) ds

)
−�2

(∫ t

0

ημ(s) ds

)
, (2.10)

where { �i (t) | t ≥ 0 } for i = 1, 2 are two independent, stan-

dard (rate 1) Poisson processes that are used to construct both

queueing processes Qη and Qη

0. Using the theory of strong

approximations for Poisson processes, we have

lim
η→∞ sup

0≤s≤t

∣∣∣∣1

η
Zη(s) − Q(0) −

∫ s

0

(λ(r ) − μ(r )) dr

∣∣∣∣ = 0 a.s.

(2.11)

and we can construct a Brownian motion, {W (t)|t ≥ 0}, such

that

lim
η→∞ sup

0≤s≤t

∣∣∣∣√η

(
1

η
Zη(s) − Q(0) −

∫ s

0

(λ(r ) − μ(r )) dr

)
−W

(∫ s

0

(λ(r ) + μ(r )) dr

)∣∣∣∣ d= 0. (2.12)

�

Applying the asymptotics of (2.11), (2.12) and Theorem 2.2

to (2.9) gives us the desired result.

Suppose that we have a single virtual customer with a job

of size x sharing a unit processing rate with Q(t) customers.

Combining our notion of a virtual customer with uniform ac-

celeration, we transform this system into η virtual customers

with jobs of size x/η sharing a unit processing rate with Qη(t)
customers. This gives us

x/η =
∫ T η(x)

0

dt

η + Qη(t)
=⇒ x =

∫ T η(x)

0

dt

1 + Qη(t)/η
.

(2.13)

Now we can state our main result and its proof.

Theorem 2.4. Given an Mt/Mt/1/PS queue and for all x ≥
0, we have the strong law of large numbers limit

lim
η→∞ T η(x) = T (0)(x) a.s. where

x =
∫ T (0)(x)

0

dt

1 + Q(0)(t)
, (2.14)
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and the central limit theorem

lim
η→∞

√
η

(
T η(x) − T (0)(x)

)
d= T (1)(x) ≡ T (0)′(x) ·

∫ T (0)(x)

0

Q(1)(t) dt

(1 + Q(0)(t))2
. (2.15)

Proof: To prove the strong law limit result (2.14),

it suffices to show that every convergent subsequence{
T η(k)(x)|k = 1, 2, . . .

}
, where η(k) → ∞, converges to

T (0)(x).

Let U = limk→∞ T η(k)(x). Since it follows that∣∣∣∣∣
∫ T η(k)(x)

0

dt

1 + Qη(k)(t)/η(k)
−

∫ U

0

dt

1 + Q(0)(t)

∣∣∣∣∣
≤ ∣∣T η(k)(x) − U

∣∣ , (2.16)

we then have

x = lim
k→∞

∫ T η(k)(x)

0

dt

1 + Qη(k)(t)/η(k)
=

∫ U

0

dt

1 + Q(0)(t)
.

(2.17)

Since 1/(1 + Q(0)(t)) is never zero, we must then have

U = T (0)(x).

To prove the central limit theorem result (2.15), we first

observe that

∫ T η(x)

T (0)(x)

dt

1 + Q(0)(t)

=
∫ T η(x)

0

dt

1 + Q(0)(t)
−

∫ T (0)(x)

0

dt

1 + Q(0)(t)
(2.18)

=
∫ T η(x)

0

dt

1 + Q(0)(t)
−

∫ T η(x)

0

dt

1 + Qη(t)/η
(2.19)

=
∫ T η(x)

0

(
Qη(t)/η − Q(0)(t)

)
dt(

1 + Q(0)(t)
)

(1 + Qη(t)/η)
. (2.20)

Now we obtain the identity

√
η

(
T η(x) − T (0)(x)

)
=

(
1

T η(x) − T (0)(x)

∫ T η(x)

T (0)(x)

dt

1 + Q(0)(t)

)−1

×
∫ T η(x)

0

√
η

(
Qη(t)/η − Q(0)(t)

)
dt(

1 + Q(0)(t)
)

(1 + Qη(t)/η)
. (2.21)

�

The rest follows since
√

η
(
Qη(t)/η − Q(0)(t)

)
converges in

distribution to a random process and all the other limits con-

verge to constants.

It should be pointed out that the proof given here holds for

any processor sharing queueing system where the queueing

process for the number of customers in the system has fluid

and diffusion limits.

We note that Theorem 2.4 applies to the transient sojourn

times of the Mt/Mt/1/PS queue. We emphasize the word tra-

nsient to stress the fact that we are not analyzing sojourn

times where the initial queue has a steady state distribution.

The results that we discuss here do not necessarily have any

implications for constant rate queues in steady state.

Figure 2 illustrates the heuristic idea behind Theorem 2.4.

The original queue is represented in the top part of the fig-

ure. To illustrate our scale transformation, the jobs are now

“quantized” into a series of shaded squares that represent unit

processing times that can be viewed as “CPU time units.” The

bottom part of Figure 2 represents an accelerated queue with

scale factor 2, where both the number of new jobs and the

processing rates of these jobs are doubled. Observe that this

is equivalent to leaving the processing rate untouched but

breaking each job in the original queue into two identical

“subjobs”, that are each half the size of the original total job.

Figure 2 illustrates a specific example where the job sizes

in the original queue are all multiples of the scale factor 2

and all jobs are initially present. In this specific case shown,

the completion times of the final subjob for the accelerated

queue are identical to the corresponding completion times

of the jobs for the original queue. We refer to this prop-

erty as “scale invariance” for the processor sharing service

discipline. While it is clear that scale invariance holds for

the specific example illustrated in Figure 2, and probably

generalizes to other cases of deterministic job sizes with ap-

propriately sized jobs, this argument cannot be generalized

indefinitely. Yet we hope that this provides some intuition be-

hind Theorem 2.4, specifically why the accelerated system

allows us to understand the behavior of the nonaccelerated

system.

Fig. 2 Scale invariance for processor sharing and limited round robin
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For deterministic job sizes and arrival processes, we can

then define a precise notion of “scale invariance” for the

processor sharing service discipline and a limited version

of round robin. For the round robin case, we are limited to

the case of the job sizes in the original queue initially being

integer multiples of the scale factor 2 times the CPU time unit

and all jobs are present initially. In either case, the completion

time of the final subjobs for the accelerated queue is identical

to the completion times of the corresponding total jobs for

the original queue. All these results generalize to any scale

factor of integer size η.

For a random processor sharing queue, we define a

stochastic generalization of this type of acceleration. For the

example of a scale factor equal to 2, we still assume that

the initial load of jobs in the system is deterministic and

we double this number. For the job arrival process however,

we replace this notion of doubling (scaling by 2) by the su-

perposition of two i.i.d. replicas of the original arrival pro-

cess. Note that for deterministic processes, this is the same

as doubling. The sizes of these arriving subjobs are i.i.d.

random variables but each one has the same distribution as

one half the size of a random job (half as many CPU time

units) in the original queue. For the case of the Mt/Mt/1/PS
queue, this notion of “stochastic acceleration” is identical to

uniform acceleration with scale factor η = 2. Now we ex-

tend the definition of uniform acceleration to the case of the

scale factor η being any integer. Instead of scale invariance,

we have the fluid and diffusion limits of Theorem 2.4 as

η → ∞.

In the next section, we reduce these formulas to the con-

stant rate case. We can obtain more explicit formulas that

give us insight into how the sojourn time responds to periods

of underloading and overloading.

3. Exact formulas for the constant rate case

We have the following formula for the fluid limit of the

M/M/1/PS queue, which is a special case of Chen, Kella

and Weiss [3].

Theorem 3.1. Given an M/M/1/PS queue with arrival rate
λ and service rate μ, we have

Q(0)(t) = (Q(0) + (λ − μ)t)+ , (3.1)

for all t ≥ 0. Moreover, for all job sizes x ≥ 0, we have

T (0)(x) = x +
∫ x

0

(
(Q(0) + 1) · e(λ−μ)y − 1

)+
dy. (3.2)

Finally, for all job sizes x ≥ 0, we have

Q(0)
(
T (0)(x)

) = (
(Q(0) + 1) · e(λ−μ)x − 1

)+
. (3.3)

For the case of λ < μ, let t∗ equal the first time that the

extended fluid limit process empties. Similarly, let x∗ equal

the size of the smallest virtual job starting at time 0 that

finishes just as the fluid limit first empties. We can write

them explicitly as

t∗ ≡ Q(0)

μ − λ
and x∗ ≡ log(Q(0) + 1)

μ − λ
. (3.4)

Using t∗, the extended diffusion limit for the queueing pro-

cess can be written as follows:

Theorem 3.2. If λ > μ or λ = μ and Q(0) > 0, then

{
Q(1)(t) | t ≥ 0

} d= { W ((λ + μ)t) | t ≥ 0 } . (3.5)

If λ = μ and Q(0) = 0, then

{
Q(1)(t) | t ≥ 0

} d=
{

W (2λt) − inf
0≤s≤t

W (2λs)

∣∣∣∣ t ≥ 0

}
.

(3.6)

Finally, if λ < μ and Q(0) ≥ 0, then

Q(1)(t)
d=

⎧⎨⎩
W ((λ + μ)t) if t < t∗,

W ((λ + μ)t)+ if t = t∗,

0 if t > t∗.

(3.7)

Note that for the case of λ < μ and Q(0) > 0, almost all

the sample paths of {Q(1)(t)|t ≥ 0} are discontinuous at t∗.

Probabilistically speaking, half of them are only left continu-

ous (i.e. W ((λ + μ)t∗) > 0) and the other half are only right

continuous at t∗.

Excluding the critical loading case of λ = μ and Q(0) =
0, we can totally characterize the distribution of T (1)(x).

Theorem 3.3. If Q(0) > 0 or λ �= μ, then T (1)(x) is a Gaus-
sian random variable with E

[
T (1)(x)

] = 0. Moreover, we
have

Var
[
T (1)(x)

] =
(

1 + Q(0)
)

(λ + μ)

(λ − μ)3

[
e2(λ−μ)x

−2(λ − μ)xe(λ−μ)x − 1
]
, (3.8)

provided that either λ > μ or the conjunction of λ < μ

and x < x∗ holds. When λ = μ, this formula reduces by
L’Hopital’s rule to

Var
[
T (1)(x)

] =
(

1 + Q(0)
)2λ

3
x3. (3.9)
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Otherwise, when λ < μ and x ≥ x∗, we have

Var
[
T (1)(x)

] = λ + μ

(μ − λ)3

[
Q(0) + 1

− 2 · log (Q(0) + 1) − 1

Q(0) + 1

]
.

(3.10)

Proof of Theorem 3.1: The extended constant rate fluid limit

(3.1) follows immediately from Equation (2.7). The con-

stant rate formula given by (3.3) follows from differenti-

ating T (0)(x) and subtracting one from it. It remains to de-

rive a closed form solution to the extended fluid limit of the

sojourn time.

If λ = μ, then Q(0)(t) = Q(0) for all t ≥ 0, and so

T (0)(x) = (Q(0) + 1) · x .

If λ > μ, then

x =
∫ T (0)(x)

0

dt

1 + Q(0) + (λ − μ)t

= 1

λ − μ
log

(
1 + λ − μ

Q(0) + 1
T (0)(x)

)
. (3.11)

Solving for T (0)(x) gives us

T (0)(x) = (Q(0) + 1) · e(λ−μ)x − 1

λ − μ

= x +
∫ x

0

(
(Q(0) + 1) · e(λ−μ)y − 1

)+
dy. (3.12)

The last step follows from e(λ−μ)x being an increasing func-

tion of x and greater than one when λ > μ and x > 0.

Now let λ < μ. Since t∗ = inf {t |Q(0)(t) = 0}, we have the

two cases of T (0)(x) < t∗ and T (0)(x) ≥ t∗. If T (0)(x) < t∗,

then we have the same equation for T (0)(x) as (3.11) for the

case of λ > μ. By continuity, we then have T (0)(x∗) = t∗.

If T (0)(x) ≥ t∗, then x ≥ x∗, and so we have x − x∗ =
T (0)(x) − t∗. This equation simply states the fact that x∗ is the

amount of the fluid model job of size x that was processed

with the initial load of fluid model jobs. Since λ < μ, the

fluid level is zero for all time after t∗. This means that the

remaining job amount of x − x∗ has the server all to itself.

Consequently,

T (0)(x) = x − x∗ + t∗, (3.13)

which gives us

T (0)(x) = x +
∫ x∗

0

(
(Q(0) + 1) e(λ−μ)y − 1

)
dy = x

+
∫ x

0

(
(Q(0) + 1) e(λ−μ)y − 1

)+
dy. (3.14)

The last step follows from e(λ−μ)x being a decreasing function

of x when λ < μ. This argument also proves that this last

formula is true for the previous case of T (0)(x) < t∗.

Proof of Theorem 3.3: When λ > μ, let α ≡ (λ − μ)/(1 +
Q(0)). Using the identities∫ t

0

s ds

(1 + αs)2
= 1

α2

[
log(1 + αt) + 1

1 + αt
− 1

]
(3.15)

and∫ t

0

log(1 + αs) ds

(1 + αs)2
= 1

α

[
1 − log(1 + αt)

1 + αt
− 1

1 + αt

]
,

(3.16)

gives us

Var
[
T (1)(x)

]
= (1 + Q(0))2 · e2(λ−μ)x ×

∫ T (0)(x)

0∫ T (0)(x)

0

Cov
[
W ((λ + μ)s), W ((λ + μ)t)

]
ds dt

(1 + Q(0) + (λ − μ)s)2(1 + Q(0) + (λ − μ)t)2

= 2(λ + μ)e2(λ−μ)x

(1 + Q(0))2
·
∫ T (0)(x)

0

(∫ t

0

s ds(
1 + αs

)2

)
dt(

1 + αt
)2

= 2(λ + μ)e2(λ−μ)x

(1 + Q(0))2α2
·

∫ T (0)(x)

0

log(1 + αt) + 1/(1 + αt) − 1

(1 + αt)2
dt

= (λ + μ)(1 + Q(0))

(λ − μ)3
· [e2(λ−μ)x − 2(λ − μ)xe(λ−μ)x − 1].

For the case of λ < μ, observe that when x < x∗, we have

T (1)(x) = T (0)′(x) ·
∫ T (0)(x)

0

W ((λ + μ)t) dt

(1 + Q(0) + (λ − μ)t)2
.

(3.17)

It follows that the variance formula is the same here as for

the case of λ > μ.

For the case ofλ < μ and x ≥ x∗, we have Q(0)(T (0)(x)) =
Q(0)(T (0)(x∗)) = 0. Therefore,

T (1)(x) = T (0)′(x∗) ·
∫ T (0)(x∗)

0

W ((λ + μ)t) dt

(1 + Q(0) + (λ − μ)t)2
.

(3.18)
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If follows that the variance formula for T (1)(x) is com-

puted here by applying the previous variance formula to

T (1)(x∗).

4. Numerics for the mean and variance

The aim of this section is to compare our analytical results

for these Mt/Mt/1/PS sojourn times with results from simu-

lation. The limit theorems of Section 2 suggest the following

fluid and diffusion limit approximations for the mean and

variance of the sojourn times,

E [T (x)] ≈ T (0)(x) + E
[
T (1)(x)

]
and

Var [T (x)] ≈ Var
[
T (1)(x)

]
, (4.1)

where in general we have E[T (1)(x)] = 0. Now we give some

general conditions for computing Var
[
T (1)(x)

]
.

Suppose that the queueing process alternates between pe-

riods of underloading and overloading, where the times of

critical loading are discrete, isolated points. If we set σn and

τn to be respectively, the starting time for the n-th period

of overloading and the ending time for the n-th period of

overloading, then we have∫ τn

σn

(λ(s) − μ(s))ds = 0 (4.2)

which implies

Q(0)(t) =
{∫ t

σn
(λ(s) − μ(s)) ds if σn ≤ t < τn ,

0 otherwise,
(4.3)

and

Q(1)(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W

(∫ t

0

(λ(s) + μ(s)) ds

)
−W

(∫ σn

0

(λ(s) + μ(s)) ds

)
if σn ≤ t < τn ,(

W

(∫ t

0

(λ(s) + μ(s)) ds

)
−W

(∫ σn

0

(λ(s) + μ(s)) ds)

)+
if t = τn ,

0 otherwise.

(4.4)

Theorem 4.1. If we are given an Mt/Mt/1 queue where crit-
ical loading only occurs at isolated time points, then T (1)(x)

is a Gaussian random variable, with E
[
T (1)(x)

] = 0 and

Var
[
T (1)(x)

] = T (0)′(x)2 ·
∞∑

n=0

∫ τn (x)

σn (x)

∫ τn (x)

σn (x)

(∫ s∧t
σn (x)

(λ(r ) + μ(r )) dr
)

ds dt(
1 + Q(0)(s)

)2 (
1 + Q(0)(t)

)2
, (4.5)

with

σn(x) ≡ σn ∧ T (0)(x) and τn(x) ≡ τn ∧ T (0)(x). (4.6)

Proof: We have

T (1)(x) = T (0)′(x)2 ·
∫ ∞

0

Q(1)(t) dt(
1 + Q(0)(t)

)2

= T (0)′(x)2 ·
∞∑

n=0

∫ τn (x)

σn (x)

Q(1)(t) dt(
1 + Q(0)(t)

)2
(4.7)

Since Brownian motion has the independent increment prop-

erty, then by (4.4) Q(1)(s) and Q(1)(t) are independent ran-

dom variables whenever s and t belong to disjoint periods of

overloading. This means that

Var
[
T (1)(x)

] = T (0)′(x)2 · Var

[ ∞∑
n=0

∫ τn (x)

σn (x)

Q(1)(t) dt(
1 + Q(0)(t)

)2

]

= T (0)′(x)2 ·
∞∑

n=0

Var

[∫ τn (x)

σn (x)

Q(1)(t) dt(
1 + Q(0)(t)

)2

]

= T (0)′(x)2 ·
∞∑

n=0

∫ τn (x)

σn (x)

∫ τn (x)

σn (x)

Cov
[
Q(1)(s), Q(1)(t)

]
ds dt(

1 + Q(0)(s)
)2 (

1 + Q(0)(t)
)2

.

The last step follows from setting

Cov
[
Q(1)(s), Q(1)(t)

] =
∫ s∧t

σn (x)

(λ(r ) − μ(r )) dr, (4.8)

which completes the proof. �

Figure 3 shows the approximations for mean and variance

given by Equation (4.1) as compared with simulation, as well

as the relative error. The left column of Figure 3 assumes a

non-homogeneous Poisson arrival process with mean rate

λ(t) = 1.2 + 0.2 ∗ sin(2π ∗ 0.2 ∗ t), while the right column

assumes a non-homogeneous Poisson arrival process with
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Fig. 3 Mean, standard deviation and relative errors for the sojourn times of Mt/M/1/PS when λ(t) = 1.2 + .2 ∗ sin 0.4π t (left column) and
λ(t) = 1.2 + .2 ∗ sin 20π t (right column), where μ = 1. Here, we assume throughout that Q(0) = 10.

mean rate λ(t) = 1.2 + 0.2 ∗ sin(2π ∗ 10.0 ∗ t). Through-

out, all jobs have sizes that are exponentially distributed with

mean 1, and the initial number of jobs in the system, Q(0) is

fixed at 10. All the simulation results presented are derived

from 10,000 realizations.

The maximum relative error of the fluid limit for the

smaller frequency case (i.e. 0.2 versus 10.0) is less than the

higher frequency case. This is consistent with results from the

theory of uniform acceleration as seen in Theorem 3.1. The

leading order terms of Equation (3.2, 3.3 and 3.4) do not de-

pend on the rate of change in the offered load, ρ ′(t). However

their correction terms grow in magnitude as ρ ′(t) becomes

larger. Therefore it is reasonable to observe a smaller relative

error in the slowly varying rate case.
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Fig. 4 Empirical results. Density function for M/M/1/PS, restricted to
jobs in (a) 10-percentile, (b) 50-percentile, (c) 90-percentile. Left col-
umn shows overloaded case where λ = 2.0 and μ = 1.0. Right column

shows underloaded case where λ = 0.5 and μ = 1. Here, we assume
throughout that Q(0) = 10.
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5. Bimodality and numerics for the distribution

In this section, we first show that the sojourn time distri-

bution always has a point mass distribution at the constant

(1 + Q(0))x .

Theorem 5.1. Conditioned on Q(0), we can define the fol-
lowing two independent events:

1. The first Q(0) i.i.d. exponential service times are all larger
than x.

2. The number of non-homogeneous Poisson arrivals for the
next (1 + Q(0))x time units is zero.

It then follows that the intersection of these two events 1 and
2 implies the event {T (x) = (1 + Q(0)) x}.

Moreover, if T (x) is the sojourn time for the Mt/Mt/1/PS
queue with some initial load Q(0), then we have

P (T (x) = (1 + Q(0)) x)

= exp

(
−

∫ (1+Q(0))x

0

λt dt − Q(0) ·
∫ x

0

μt dt

)
,

(5.1)

which equals the probability for the intersection of these two
events 1 and 2.

Proof: When one of these two events does not happen, then

there is some exponentially distributed random variable that

is less than (1 + Q(0))x . This random variable, conditioned

on being less than the constant (1 + Q(0))x , has a density.

Since our underlying queueing process is Markovian, the

remaining time until T (x) occurs is independent of this con-

ditioned random variable.

Now we use the fact that if X and Y are two independent

random variables and if X has a probability density, then so

does X + Y . In fact the new density for this sum is the con-

volution of the density for X with the probability distribution

for Y . �

If we use the notion of generalized functions, we can let

fT (x)(t) denote the “density” of T (x), where we may use delta

functions to allow for the possibility of point mass distribu-

tions. Given our limit theorems, we know that this sojourn

time distribution is asymptotically normal. This suggests that

the actual sojourn time distribution is approximately bimodal

with peaks about the values (1 + Q(0))x and T (0)(x). Our

density approximation formula is then

fT (x)(t) ≈ e−β(x) · δ(t − (1 + Q(0))x)

+ (1 − e−β(x)) · 1√
2πv(x)

e−(t−m(x))2/(2v(x)) (5.2)

Table 1 Values for β(x) used in Figure 4.

β(x) λ = 2.0 λ = 0.5

x = 0.10536 (10th percentile job size) 3.37152 1.63308

x = 0.69315 (50th percentile job size) 22.1808 10.743825

x = 2.30259 (90th percentile job size) 73.68288 35.690145

where δ(·) is the delta function, m(x) ≡ T (0)(x), v(x) ≡
Var

[
T (1)(x)

]
and

β(x) ≡
∫ (1+Q(0))x

0

λ(s) ds + Q(0)

∫ x

0

μ(s) ds. (5.3)

For the constant rate case, we have β(x) = (λ · (Q(0) + 1) +
μ · Q(0))x .

For the graphs of our numerical examples in Figure 4, we

set μ = 1, Q(0) = 10.0 and either λ = 2.0 or λ = 0.5. Given

an exponentially distributed service time with mean one, we

have x = 0.10536 for the 10 percentile job size, x = 0.69315

for the 50th percentile job size and x = 2.30259 for the 90th

percentile job size. The values for β(x) are given by Table 1.

In Figure 4 the simulated densities for the 10, 50 and

90-th percentile job sizes are compared with their respective

normal approximations. The left column of Figure 4 displays

this comparison for an overloaded M/M/1/PS with arrival

rate λ = 2, while the right column considers an underloaded

M/M/1/PS with arrival rate λ = 0.5.

The bimodal phenomenon discussed earlier in this sec-

tion is readily apparent in the two graphs for the 10 per-

centile job size. Here, the point masses occur with proba-

bilities 0.034 and 0.20. The bimodality is observable here

because β(x) is sufficiently small. Since β increases lin-

early in x , the point mass probability decreases exponentially.

Thus the bimodal behavior of the sojourn times of the 50-th

and 90-th job size percentiles are not observable, since their

point mass probabilities equal 2.33 × 10−10 (50%-tile,left),

2.17 × 10−5 (50%-tile,right), 9.83 × 10−33 (90%-tile,left),

and 3.13 × 10−16 (90%-tile,right).

6. Conclusion

We introduce the notion of a virtual customer for an approx-

imate analysis of the sojourn time for a processor sharing

queue. This creates a virtual job of a known size that is af-

fected by the other jobs in the queue, but does not affect the

response times of those other jobs.

We extend previous asymptotic results for the

Mt/Mt/1/PS queueing process to accommodate a non-zero,

scaled initial load. These results can then be transformed

into fluid and diffusion limits for the sojourn times. These

sojourn time formulas hold in general for any queueing

process that has fluid and diffusion limits.

Springer



30 Queueing Syst (2006) 53: 19–30

Our uniform acceleration scaling gives a simpler analysis

of the mean and variance of the sojourn time, yet yields re-

sults that are a good approximation of the original stochastic

model. We then obtain a time-varying analysis of the response

time for systems that may experience alternating periods of

underloading and overloading. Our numerical examples of

overload behavior show that our approximations work well

for a wide range of virtual job sizes. This type of behavior

cannot be captured by steady-state models.

The density of the virtual response time is found to be well

approximated by the convolution of a normal density and a

point mass. Guided by simulation of the sojourn times of

the Mt/Mt/1/PS queue, we show that the sojourn time den-

sity may sometimes have a bimodal property. Even though

we have convergence to the normal distribution, in practice

the point mass contribution may not decay to zero quickly

enough. In our numerical examples, we see when such a point

mass term can contribute to our approximation of the density.

In future work we will extend this fluid and diffusion anal-

ysis to sojourn times for heterogeneous classes of customers

with general job size (service) distributions, customer aban-

donment (having jobs “time out” after a given amount of

time), and weighted processor sharing.
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