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his paper develops methods to determine appropriate staffing levels in call centers and other many-server

queueing systems with time-varying arrival rates. The goal is to achieve targeted time-stable performance,
even in the presence of significant time variation in the arrival rates. The main contribution is a flexible
simulation-based iterative-staffing algorithm (ISA) for the M,/G/s, + G model—with nonhomogeneous Poisson
arrival process (the M,) and customer abandonment (the +G). For Markovian M,/M/s, + M special cases, the
ISA is shown to converge. For that M;/M/s, + M model, simulation experiments show that the ISA yields
time-stable delay probabilities across a wide range of target delay probabilities. With ISA, other performance
measures—such as agent utilizations, abandonment probabilities, and average waiting times—are stable as well.
The ISA staffing and performance agree closely with the modified-offered-load approximation, which was pre-
viously shown to be an effective staffing algorithm without customer abandonment. Although the ISA algorithm
so far has only been extensively tested for M,/M/s, + M models, it can be applied much more generally—to
M,/G/s; + G models and beyond.
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1. Introduction

In this paper, we develop methods to determine ap-
propriate staffing levels in call centers and other
many-server queueing systems with time-varying
arrival rates. For background on call centers, see Gans
et al. (2003).

In setting staffing levels, we are faced with two
sources of variability: predictable variability—time vari-
ations of the expected load—and stochastic variabil-
ity—random fluctuations around this time-dependent
average. (There may also be model uncertainty, but
we do not consider it.) Most available staffing algo-
rithms are designed to cope only with stochastic vari-
ability, avoiding the predictable variability in various
ways. For example, when the service times are rel-
atively short, as in many call centers when service
is provided by a telephone call, it is customary to
use a pointwise stationary approximation (PSA), i.e., to
act as if the system at time ¢ were in steady state
with the arrival rate occurring at that instant (or dur-
ing that half hour); see Green and Kolesar (1991) and
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Whitt (1991). In call centers, staffing typically is held
constant over staffing intervals of 15-30 minutes. The
effect of staffing intervals can be important (see Green
et al. 2001), but here we do not consider staffing
intervals.

However, service times are not always short, even
in call centers. If relatively lengthy interactions are
not uncommon or if arrival rates change quite rapidly,
then PSA can produce poor performance. As a con-
sequence, some parts of the day may be overstaffed,
while others are understaffed. For a review of staffing
methods to cope with time-varying arrivals, see Green
et al. (2007).

In this paper, we address the staffing problem with
both predictable and stochastic variability: given a
daily performance goal, and faced with both pre-
dictable and stochastic variability, we seek to find the
minimal staffing levels that meet this performance
goal stably over the day. We seek to understand
when PSA is appropriate and to do significantly better
than PSA when it is not appropriate. We emphasize
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the importance of achieving time-stable performance.
With time-stable performance, the nearly constant
quality of service is easily adjusted up or down, as
desired. Moreover, our experience suggests that cus-
tomers tend to prefer consistent performance even at
the expense of some level of service.

Our main contribution in this paper is a flexible
simulation-based iterative-staffing algorithm (ISA). We
develop the ISA for the many-server M,/G/s,+ G
queueing model, which has a nonhomogeneous
Poisson arrival process (the M,) with time-varying
arrival-rate function A(t); independent and identi-
cally distributed (ii.d.) random service times with
a general cumulative distribution function (cdf) (the
first G); a time-varying number of servers s,, which
is for us to set; and i.i.d. random times to abandon
(before starting service) with a general cdf (the final
+G). Allowing nonexponential service-time and time-
to-abandon distributions is important, because they
have been found to occur in practice (see Bolotin 1994,
Brown et al. 2005).

We show that the ISA staffing function s*
yields time-stable delay probabilities across a wide
range of delay-probability targets for the Markovian
M,/M/s, + M special case, where the service-time and
time-to-abandon cdfs are exponential with means u~!
and 67!, respectively. Even though we only report
results for ISA applied to Markovian M,/M/s, + M
models, the method is developed for more general
M,/G/s; + G models. (Indeed, we obtained similar
results for log-normal and deterministic service-time
distributions.) Moreover, the ISA applies much more
generally, so that it has the potential of far-reaching
applications. Indeed, by being based on simulation,
ISA has two important advantages: First, by using
simulation, we achieve generality—we can apply the
approach to a large class of models; we are not lim-
ited to models that are analytically tractable. We are
able to include realistic features not ordinarily con-
sidered in analytical models. For example, we can
carefully consider what happens to agents who are in
the middle of a call when their scheduled shift ends.
Second, by using simulation, we achieve automatic val-
idation: In the process of performing the algorithm, we
directly confirm that ISA achieves its goal; we directly
observe the performance of the system under the final
staffing function {si*: 0 <t < T}. Of course, in other
settings the effectiveness of the ISA still needs to be
verified.

The rest of this paper is organized as follows: In §2,
we specify the ISA. In §3, we review the infinite-
server (IS) and modified-offered-load (MOL) approxi-
mations from Jennings et al. (1996). We will show that
the ISA staffing levels and performance agree closely
with MOL and that both perform well. In §§4 and 5,
we illustrate the performance of ISA by considering

M,/M/s; + M examples, first with a stylized sinu-
soidal arrival-rate function and long service times,
and then with a realistic arrival-rate function from
a medium-sized financial services call center, taken
from Green et al. (2001) and shorter (customary) ser-
vice times. In §6, we present some supporting theory
for the case 6 = u. In §7, we discuss the dynamics
of the iterative algorithm, establishing convergence
of the ISA in the M,/M/s, + M special case (for all
w and 0). Finally, in §8, we draw conclusions and indi-
cate some directions for further research.

We present additional material in a longer un-
abridged version available in the online supplement
(provided in the e-companion).! There we consider
the M;/M/s, model (without abandonment) with the
same sinusoidal arrival-rate function used for the
M,/M/s;+ M model in § and show that ISA also
works well for it. We also revisit the “challenging
example” in Jennings et al. (1996), again showing
that ISA performs well, just like MOL. We expand
the analysis of the M,/M/s, + M example in §4 by
considering different abandonment rates, in partic-
ular, § = 0.2 and 6 = 5.0 with u =1, representing
relatively patient and impatient customers, respec-
tively. We present additional material for the realistic
example discussed in §5. We also provide additional
theoretical perspective for the square-root-staffing
algorithm from a uniform-acceleration perspective, as
in Mandelbaum et al. (1998) and Massey and Whitt
(1998) and references therein.

2. The Simulation-Based ISA

In this section, we specify the ISA. For our imple-
mentation of the algorithm, we assume that we have
an M,/G/s, + G model, but it will be evident that
the method applies much more generally. To start, we
specify a time horizon [0, T], an arrival-rate function
{A(t);0 <t < T}, a service time cdf, and a time-to-
abandon cdf. The algorithm is iterative, continuing
until the observed error is negligible. Let s be the
staffing level at time t in iteration 1, and let Nt(") be
the total number of customers in the system at time ¢
under this staffing function. The final iteration yields
the ISA staffing s and the stochastic process N/*#,
representing the number of customers in the system
with that staffing function.

Although our algorithm is time continuous, we
make staffing changes only at discrete times. That
is achieved by dividing the time horizon into small
intervals of length A. In all experiments presented
in this paper, we use A =0.1/u, where 1/u is the

! An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
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mean service time. We then let the number of servers
be constant within each of these intervals. For any
specified staffing function, the system simulation can
be performed in a conventional manner. We gener-
ate a continuous-time sample path for the number
in the system by successively advancing the next
generated event. The candidate next events are, of
course, arrivals, service completions, abandonments,
and ends of shifts (the times at which the staffing
function is allowed to change). For the nonstationary
Poisson arrival process, we generated arrival times
by thinning a single Poisson process with a constant
rate A*, exceeding the maximum of the arrival-rate
function A(t) for all £, 0 <t < T. Then an event in
the Poisson process at time f (a potential arrival time)
is in an actual arrival in the system with probability
A(t)/A*, independent of the history up to that time;
see §5.5 of Ross (1990). We estimate the distribution of
N" for each n and t by performing multiple (5,000)
independent replications. We think of starting off with
an infinite number of servers. Because this is a simu-
lation, we choose (after experimenting) a large finite
number, ensuring that the probability of delay (ie.,
of having all servers busy on arrival) is negligible
for all t.

The algorithm iteratively performs the following
steps, until convergence is obtained (convergence
means that the staffing levels do not change more
than some threshold 7 after an iteration, which we
take to be 1): ‘

Step 1. Given the ith staffing function {sf’): 0<t<T},
evaluate the distribution of N for all ¢ using
simulation. _

Step 2. For each t, 0 <t < T, let sf'H) be the least
number of servers so that the delay-probability con-
straint is met at time ¢; i.e., let

s = argmin{k e N: P{N” > k} < a).

Step 3. If there is negligible change in the staffing
from iteration i to iteration i+ 1, then stop; i.e., if

max{[s{*) — s 0<t < T} <1,

then stop and let 5"V be the proposed staffing func-
tion, denoted by sP°*. Otherwise, advance to the next
iteration; i.e., replace i by i +1 and go back to Step 1.

As previously indicated, s denotes the final
staffing level at time t and N/* denotes the number
in system at time t with that staffing function. If the
algorithm converges, then necessarily P(N/5* > s54) ~
a, 0<t<T.

Our implementation of ISA was written in C++.
For the special case of the Markovian M,/M/s, +
M model with individual service rate w = 1/E[S]
and individual abandonment rate 6, we rigorously

establish convergence of the algorithm in §7. Expe-
rience indicates that the algorithm consistently con-
verges relatively rapidly. Experience also indicates
that the final time-dependent delay probabilities and
other performance measures are remarkably stable.
The number of iterations required depends on the
parameters, especially the ratio r=60/u. If r =1, cor-
responding to an infinite-server queue—see §6—then
no more than two iterations are needed, because the
distribution of the number in the system does not
depend on the number of servers in that special case.
As r departs from 1, the number of required itera-
tions typically increases. For example, when r = 10,
the number of iterations can get as high as 6-12. When
r is very small and the traffic intensity is very high,
so that we are at the edge of stability, the number
of iterations can be very large. For more discussion,
see §7.

3. Infinite-Server and
Modified-Offered-Load

Approximations

In this section, we review staffing algorithms based
on infinite-server (IS) and modified-offered-load (MOL)
approximations from our previous paper (Jennings
et al. 1996). These approximations were developed for
the M,/G/s, model without customer abandonment,
but the methods extend directly to the correspond-
ing model with customer abandonment. However,
the effectiveness of these methods with abandon-
ments was not demonstrated previously. Our simu-
lation experiments here will show that ISA produces
essentially the same results as MOL, with and without
customer abandonment, and that both are effective.
(Our reported experiments are limited to Markovian
M,/M/s; + M models, but limited experimentation
for other M,/G/s, + G models indicates that excellent
results hold there, too.)

To describe our goal in staffing, let N, be the num-
ber of customers in the M,/G/s, + G system at time ¢,
either waiting or being served. We focus on the prob-
ability of delay (of a potential arrival, i.e., P(N, > s,)),
aiming to choose the time-dependent staffing level s,
such that

P(N;>s,)<a<P(N,>s,—1) forallt, (1)
where « is the target delay probability.

3.1. The IS Approximation
We discuss the MOL and IS approximations together,
because the MOL approximation builds on the IS
approximation.

We start by considering the IS approximation. Why
would anyone consider an IS approximation? From
a mathematical perspective, the reason is that the



Feldman et al.: Staffing of Time-Varying Queues to Achieve Time-Stable Performance

Management Science 54(2), pp. 324-338, © 2008 INFORMS

327

finite-server M,/G/s, + G model of interest is analyt-
ically intractable, whereas the corresponding infinite-
server M;/G/oco model is remarkably tractable. From
an engineering perspective, the reason is that the IS
model can be used to show the amount of capac-
ity that would actually be used (and is thus needed)
if there were no capacity constraints (i.e., a limited
number of servers). For the Markovian M,/M/s, + M
model, where 6 = u, there is even a stronger con-
nection: in that special case, the distribution of the
number of customers in the IS M,/M /oo model actu-
ally coincides with the distribution of the number of
customers in the M,/M/s, + M model, as we explain
in §6. Thus, there is additional strong motivation for
considering the IS approximation.

So what does the IS approximation do? The IS
approximation for the M,/G/s, + G model approxi-
mates the random variable N, by the number N;* of
busy servers in the associated M,/G/occ model, hav-
ing infinitely many servers but the same arrival pro-
cess and service times. The IS staffing function s®
is obtained by applying (1) with N instead of N;.
As we now explain, that approximation provides
great simplification because (i) the tail probability
P(N® > s,) at time t depends on the staffing function
{s;: t > 0} only through its value at the single time ¢,
and (ii) the exact time-dependent distribution of N®
is known.

The first simplification follows from the fact that
the distribution of the stochastic process {N;*: t > 0} is
totally independent of the staffing function {s;: t > 0}.
When we calculate P(N;* > s,), the staffing level s, just
serves as the argument of the tail-probability function.
The second simplification stems from basic properties
of M,/G/oo queues. In particular, as reviewed in Eick
et al. (1993a), for each t, N° has a Poisson distribution
whenever the number in the system at the initial time
has a Poisson distribution. (Being empty is a degener-
ate case of a Poisson distribution.) That Poisson dis-
tribution is fully characterized by its mean m{°.

As in previous work, such as Eick et al. (1993a,
1993b) and Jennings et al. (1996), our work here shows
that the time-dependent mean m;° is the crucial quan-
tity. We regard this exact time-dependent mean m;° in
the M,/G/co model as the (time-dependent) offered load
for the M,/G/s, + G model.

We now observe that convenient formulas exist for
the offered load m{°. Eick et al. (1993a) showed that
the offered load has the tractable representation

m® = E[N™] = [t G (t — w)A (1) du

— E[/t_ts M) du} —E[A(t=S)IE[S], (2

where A(t) is the arrival-rate function, S is a generic
service time with cdf G, G°(1)=1—-G(t)=P(S> 1),

and S, is a random variable with the associated
stationary-excess cdf (or equilibrium-residual-lifetime
cdf) G, associated with the service-time cdf G, de-
fined by

G,(H)=P(S, <t) = 1]/0tGC(u)du, t>0, (3

E[S
with kth moment E[SF] = E[S*!]/((k + 1)E[S]) (see
Theorem 1 of Eick et al. 1993a and references therein).

The different expressions in (2) provide useful
insight; see Eick et al. (1993a, 1993b) and §4.2 of
Green et al. (2007). For the special case in which A(f)
is constant, m® = m™ = AE[S]. Accordingly, the PSA
approximation for m® in the M,/G/oc model is m}* =
A(t)E[S]. We call mP®A the PSA (time-dependent)
offered load for the M,/G/s, + G model.

In addition, there are convenient explicit formulas
for m{* in special cases as well as useful approxima-
tions. We will use the explicit formula for sinusoidal
arrival-rate functions in §4. Based on a second-order
Taylor-series approximation for A about ¢, the offered
load can be approximated by

m;> ~ A(t — E[S,])E[S] +

@
D ar(s )11, @
where A@(t) is the second derivative of the func-
tion A evaluated at time t; see Theorem 9 of Eick et al.
(1993a). Approximation (4) shows that the approx-
imate offered load in (4) coincides with the PSA-
offered load m* = A(t)E[S] except for a time shift by
E[S.] and a space shift by A®(t) Var(S,)E[S]/2. The time
shift is especially important. A simple refinement of
PSA based on (4) suggested by Eick et al. (1993a)
is lagged PSA, where we ignore the space shift and
approximate m{* by A(t — E[S,])E[S].

We now continue, exploiting the established Poisson
distribution with a known time-dependent mean ;.
Assuming that m{° is not extremely small, we can
apply a normal approximation for the Poisson distribu-
tion, obtaining first P(N, > s,) & P(N;* > s5,) and then

PO = 5) & PING )= 5) =P (N(O, )= 22T )

N
- 1_@(Sf\/_m_”;fo>, )

where N(m, 0*) denotes a normally distributed ran-
dom variable with mean m and variance o2, and
d(x)=P(N(0, 1) <x) is the standard normal cdf.

From (5), we see that we can obtain a stable approx-
imate delay probability if we can choose the staffing
function s to make (s{° —m;°)//m;° stable in the final
term of (5). Accordingly, we obtain the square-root-
staffing formula:

s =[my+Bymy], 0<t=<T, (6)
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where [x] is the least integer greater than or equal
to x and the constant § is a measure of the quality
of service. Combining the target in (1) and the nor-
mal approximation in (5), we see that the quality-of-
service parameter 8 in (6) should be chosen so that
1-—d(B)=a.

The normal approximation and the square-root-
staffing formula for stationary many-server queues are
classic results (see Whitt 1992 and references therein).
What is less well understood is the role of the offered
load m{® with time-varying arrivals. The notation s
means that we staff according to the IS approxima-
tion. In doing so, we not only apply the normal
approximation and the square-root-staffing formula,
but we also use the IS mean m}° as the offered load.

3.2. The MOL Approximation

Section 4 of Jennings et al. (1996) also introduced
a refinement of the IS approximation for the time-
dependent delay probabilities, which is tantamount
to an MOL approximation, as in Jagerman (1975) and
Massey and Whitt (1994, 1997). The MOL approxi-
mation for N, in the M,/G/s, + G model at time ¢,
denoted by NMOL, is the limiting steady-state num-
ber of customers in the system in the corresponding
stationary M/G/s+ G model (with the same service-
time and time-to-abandon distributions and the same
number of servers s, at time t) but using m{> as the
stationary offered load operating at time t. Because
the stationary offered load is AE[S], that means let-
ting the homogeneous Poisson arrival process in the
stationary M/G/s + G model have time-dependent
arrival rate

MOL — % =mu at time t. (7)
The MOL staffing function sM°" is obtained by apply-
ing (1) with NMOU instead of N,.

The important insight is that the “right” time-
dependent offered load in the M,/G/s, + G model
should be the time-dependent mean number of busy
servers in the associated IS model—m;°. Because the
right offered load for the stationary model is AE[S],
the “obvious” direct time-dependent generalization is
the PSA-offered load mP* = A(t)E[S]. However, AE[S]
is also the mean number of busy servers in the asso-
ciated stationary IS model. It turns out that the mean
number of busy servers in the IS model is a better
generalization of “offered load” than the PSA time-
dependent offered load for most time-varying many-
server models. Indeed, it may be considered exactly
the right definition for the IS model itself.

The MOL approximation in §4 of Jennings et al.
(1996) was not applied directly. Instead of calculating
the steady-state delay probability for the stationary
M/M/s model, we exploited an approximation for

the delay probability based on a many-server heavy-
traffic limit in Halfin and Whitt (1981). That produces
a simple formula relating the delay probability o and
the service quality 8. Moreover, the heavy-traffic limit
provides an alternative derivation of the square-root
staffing formula in (6), without relying on an IS or
a normal approximation. We will do the same thing
here with customer abandonments, relying on the
heavy-traffic limits for the M/M/s+ M model estab-
lished by Garnett et al. (2002).

Jennings et al. (1996) showed that the method for
setting staffing requirements in the M,/G/s, model
outlined above is remarkably effective. This was
demonstrated by doing numerical comparisons for
the M,/M/s, special case. For any given staffing func-
tion, the time-dependent distribution of N, in that
Markovian model can be derived by solving a sys-
tem of time-dependent ordinary differential equations
(ODEs). We too could have exploited ODEs for the
M,;/M/s;, + M model, but we wanted to develop a
method that applies to much more general models.

The most important conclusion from those previous
experiments in Jennings et al. (1996) is that it is indeed
possible to achieve time-stable performance for the
M, /M /s, model by an appropriate choice of a staffing
function s,, even in the face of a strongly time-varying
arrival-rate function. Here we show the same is true
for the M,/M/s, + M model, and we provide a means
to go far beyond these Markovian models.

4. An M,/M/s,+ M Example with a

Sinusoidal Arrival-Rate Function
We demonstrate the performance of ISA by consider-
ing M,/M/s, + M examples. We start in this section
with a sinusoidal arrival-rate function

A(t)=a+Db-sin(ct), 0<t<T, (8)
letting 2 =100, b =20, and ¢ = 1. Here we let the indi-
vidual service rate u and the individual abandonment
rate 0 both be 1. Letting i =1 does not lose generality,
because we are free to choose the time units. For the
special case 0 = u that we consider, we have strong
supporting theory in §6, but we also found that ISA
is effective with other abandonment rates. We show
corresponding results for § =0.2 and 6 =5.0 in the
online supplement.

Because m{>* = A(t)E[S] = A(t), this example cap-
tures the many-server spirit of a call center. How-
ever, the sinusoidal form of the arrival-rate function
is clearly a mathematical abstraction, which has the
essential property of producing significant fluctua-
tions over time, i.e., significant predictable variability.
This particular arrival-rate function is by no means
critical for our analysis; our methods apply to an arbi-
trary arrival-rate function.
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An important issue, however, is the rate of fluc-
tuation in the arrival-rate function compared to the
expected service time. To be concrete, we will mea-
sure time in hours and focus on a 24-hour day, so that
T =24. A cycle of the sinusoidal arrival-rate function
in (8) is 27/c; we have set c =1, so a cycle is 27 ~ 6.3
hours. Thus there will be about four cycles during
the day.

Because we let the mean service time be 1 and have
chosen to measure time in hours, the mean service
time in this example is 1 hour. That clearly is rela-
tively long for most call centers, where the interac-
tions are short. If we were to change the time units to
rectify that, making the expected service time 10 min-
utes, then a cycle of the arrival-rate function would
become about 1 hour, making for more rapid fluctua-
tions in the arrival rate than are normally encountered
in call centers. Thus, our example is more challenging
than usually encountered in call centers but may be
approached in evolving contact centers if many inter-
actions do indeed take an hour or more. We consider
a more realistic example in §5.

We have a sinusoidal arrival-rate function, so we
can apply formula (15) of Eick et al. (1993b) to obtain

my =a+ [sin(ct) — ¢ - cos(ct)]. )

14c?
For the specific parameters 2 =100, b =20, and c =1,
we get m° =100+ 10[sin(t) — cos()].

To put our model into perspective, in Figure 1 we
plot the time-dependent offered load m{° in (9) for the
sinusoidal arrival-rate function in (8) for the parame-
ters a =100 and b =20, as in our example, but with
four different values of the time-scaling parameter c:
0.5, 1, 2, and 8. Note that the time-dependent offered

Figure 1 Offered Load m;° for the Sinusoidal Arrival-Rate Function in
(8) with Parameters a =100, b =20 and Four Possible
Values of ¢: 0.5, 1, 2, and 8
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load m° is also a periodic function with the same
period 27 /c as the arrival-rate function A(t), but the
number of cycles increases and the amplitude (size
of the fluctuations) decreases as c increases. As ¢
increases, m}> approaches the average value a =100.

In Figure 2, we present two graphs showing the
ISA staffing functions for two values of a: 0.1 and 0.9.
In each graph, we plot three curves: the arrival rate
A(t) = mPSA (dotted), the offered load m* (dashed),
and the ISA staffing function s’* (solid). Note that we
start our system empty. This allows us to observe the
behavior of the transient stage. In particular, there is
a ramp-up at the left side of the plot. Our methods
respond appropriately to that ramp-up.

The two values of a used in Figure 2 plus « =0.5
characterize three different regimes of operation, as
discussed by Garnett et al. (2002): quality-driven (QD),
target a = 0.1; efficiency-driven (ED), target a = 0.9;
and quality-and-efficiency-driven (QED), target o = 0.5.
In the QD regime, the ISA staffing function is well
above the time-dependent offered load, while in the
ED regime the ISA staffing function is well below the
time-dependent offered load. However, in the QED
regime, the ISA staffing function falls right on top
of the time-dependent offered load. (For that reason,
we omit the plot because it is unnecessary.) In that
QED case (a = 0.5), it would have sufficed to simply
let s, = m,. This phenomenon held in all our experi-
ments. That itself is quite stunning. (Note that staffing
to the offered load is much easier than the full MOL
approximation. Clearly, customer abandonment plays
a crucial role in staffing to the offered load.)

We now show that ISA achieves the desired time-
stable performance. In Figure 3, we show the ISA
delay probabilities obtained with target a for a =
0.1,0.2,...,0.9. These delay probabilities are esti-
mated by performing multiple (5,000) independent
replications with the final staffing function deter-
mined by our algorithm. (We verified that this was
sufficient by repeating the experiment with indepen-
dent random numbers. We saw negligible change in
the plots. The observed fluctuations are largely due
to the inherent discreteness: The staffing levels must
be integers.) Under the ISA staffing levels, the delay
probabilities are remarkably accurate and stable; the
observed delay probabilities fluctuate around the tar-
get in each case.

In addition to stabilizing the delay probabili-
ties, other performance measures (e.g., utilization,
tail probabilities, abandonment probabilities, etc.) are
found to be quite stable as well. However, as the tar-
get delay probability increases toward heavy load-
ing, the abandonment probabilities become much less
time stable, as shown in Figure 4. (As with the delay
probability, we let the abandonment probability be for
a potential arrival at time t; a precise definition is
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Figure 2 Staffing (Number of Servers as a Function of Time) for the Sinusoidal Example: (1) « = 0.1 (QD), (2) « = 0.9 (ED)
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Figure 3 Delay Probabilities for the Sinusoidal Example with Nine Delay-Probability Targets « (Ranging from 0.1 to 0.9)
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Figure 4
0.18

Abandonment Probabilities for the Same Sinusoidal Example with the Same Nine Delay-Probability Targets
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given after (12).) We discuss this phenomenon further
in the online supplement. Other measures of conges-
tion, such as average waiting time and average queue
length, were also found to be relatively stable, but
like the abandonment probabilities, these become less
time stable under heavy loads. Details are given in
the online supplement.

We now validate the square-root-staffing rule in (6).
For that purpose, we define an implied empirical quality
of service {B4: 0 <t < T} by setting

Isa _ St —my

t - 0 4

my

0<t=<T, (10)
where m}° is again the offered load in (2) and (9).
Because s°* is obtained from ISA, the function B is
itself obtained from ISA. It thus becomes interesting
to see if the implied service grade is approximately
constant as a function of time. That would empirically
justify the square-root-staffing formula in (6).

And, indeed, it is. Again we consider nine val-
ues of a ranging from 0.1 to 0.9 in steps of 0.1.
As a increases, the quality of service reflected by
B4 decreases, from about +1.3 to —1.3, hitting 0 for
a=0.5. But the main point is that B is approxi-
mately constant as a function of ¢ for each a over the
full range from 0.1 to 0.9. The oscillations in the plots
are essentially the same as in Figure 3 (see the online
supplement).

The time stability of BI* is extremely important
because it validates the square-root-staffing formula
in (6) for this example. First, Figure 3 shows that ISA
is able to produce the target delay probability « for a
wide range of a. When this is done, the square-root-
staffing formula holds empirically. In other words, we

10 1

T T
12 13 14 15 16 17 18 19 20 21 22 23
Time (hours)

have shown that we could have staffed directly by
the IS approximation and the square-root-staffing for-
mula instead of by the ISA. The single critical non-
trivial element is the offered load m{°.

However, one issue remains: to staff directly by
the square-root staffing formula, we need to be able
to relate the quality of service 8 to the target delay
probability «. Indeed, we want a function mapping
a into 8. We propose a simple answer: MOL. For the
M,/M/s, + M model with time-varying arrival-rate
function A(t), staffing function s,, and parameters u
and 6, we use the associated stationary M/M/s+ M
model, with the same service and abandonment rates
p and 0, and with s =s,, A =AML =m>u (as in (7))
for the approximation at time t. Moreover, paralleling
what was done in §4 of Jennings et al. (1996), we sug-
gest using simple formulas obtained from the many-
server heavy-traffic limit for the M/M/s + M model
in Garnett et al. (2002). The Garnett function mapping
B into «a is

_ EM] oo
_[1+\/; = B<w, (1)

where B =B,/0/u, with u the individual service rate
and 0 the individual abandonment rate (both here set
equal to 1) and h(x) = ¢(x)/(1 — ®(x)) is the hazard
rate of the standard normal distribution, with ¢ being
the probability density function (pdf) and ® the cdf.
To obtain the desired function mapping « into 8, we
use the inverse of the Garnett function, which is well
defined.

We also looked at additional simulation output,
aimed at establishing the validity of the ISA and MOL
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Figure 5 Empirical Conditional Waiting Time Distribution, Given Positive Wait, forthe \/,/M /s, + M Example with Delay-Probability Target « = 0.1 (QD)
0.20
018 + == Wait| Wait> 0
' —+— Garnett function
0.16 1
0.14 -

o
pry
N

Proportion
o
>

0.08
0.06 -
0.04
0.02 1
0+ HE
0 0.05 0.10 0.15 0.20

approximations. First, we compared the empirical dis-
tribution of the customer waiting times, with ISA,
to the theoretical distribution of those waiting times
in the stationary M/M/s + M model. To illustrate,
in Figure 5 we plot the empirical conditional wait-
ing time pdf given wait, i.e., the distribution of the
waiting time for those who were in fact delayed, dur-
ing the entire time horizon, for the case a =0.1. We
plot the proportions experiencing delays in intervals
of length 0.01 (hours). In doing so, we are looking
at all the waiting times experienced across the day.
As before, we obtain statistically precise estimates by
averaging over a large number of independent repli-
cations (here again 5,000). In this case, the empirical
conditional distribution is based on statistics gathered
from the time of reaching steady state until the end of
the horizon. We compared the empirical conditional
waiting-time distribution to many-server heavy-traffic
approximations for the conditional waiting-time dis-
tribution in the stationary M/M/s+ M queue, draw-
ing on Garnett et al. (2002). Figure 5 shows that the
approximation for the conditional waiting-time distri-
bution in the stationary queues matches the perfor-
mance of our time-varying model remarkably well.
Plots for « = 0.5 and a = 0.9 in the online supple-
ment show an excellent match across the full range of
delay-probability targets.

We next related the empirical («, B) pairs to the
Garnett function in (11). We define the empirical val-
ues @ and B as simply the time averages of the
observed (time-stable) ISA values (for «, displayed in
the plot in Figure 3). In Figure 6, we plot the pairs
of (a;, B;) alongside the Garnett function. Needless to
say, the agreement is phenomenal!

0.25 0.30 0.35 0.40 0.45 0.50

Time (hours)

We close this section by observing that, just as in
Jennings et al. (1996), other common approximations,
such as the PSA or the simple stationary approxi-
mation, using the overall time-average arrival rate
performs poorly for this example; again see the online
supplement.

Figure 6 Comparison of the Empirical Relation Between « and g with

the Garnett Function for the Sinusoidal Example
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Figure 7

Hourly Call Volumes to a Medium-Size Financial Services Call Center
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5. A Realistic M,/M/s, + M Example

In this section, we consider a more realistic example: a
medium-sized financial services call center taken from
Green et al. (2001). The hourly call volumes are shown
in Figure 7. The mean service time is E[S] = 6 minutes.
That is achieved with our hourly time scale by letting
= 10. Corresponding to that, we let 6§ =10, so that
we have 0 = p as in §4. (Green et al. 2001 did not
consider customer abandonment.)

Figure 8

11 12
Hour of day

13 14 15 16 17 18 19 20 21 22 23

Once again, ISA is very effective. To show that, we
plot the ISA delay probabilities as a function of the
delay-probability target « for three values of « in Fig-
ure 8. With such short service times, we might think
that that this should be an easy problem for which sim-
ple PSA would also work well. Indeed, when we look
at the staffing for three values of « in Figure 9, we do
not see much difference, but there actually is a differ-
ence. Even though the service times are indeed short

Comparison of ISA, PSA, and Lagged PSA for the Same Three Delay-Probability Targets
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Figure 9 Comparison of Staffing Levels Based on ISA, PSA, and Lagged PSA for the Realistic Example, for Three Delay-Probability Targets: 0.1, 0.5,
and 0.9
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here, the arrival-rate function is changing rapidly at
some times, especially in hours 4-6. For this exam-
ple, Figure 8 shows that simple PSA performs signif-
icantly worse than ISA.

As before, we find that ISA produces essentially the
same results as MOL. Moreover, the dominant effect
in MOL is captured by the time lag in (4); i.e., here it
suffices to use lagged PSA (LPSA), with approximate
offered load A(t — E[S,])E[S]. Because the service-time
distribution is exponential, S, and S have a common
exponential distribution, and the lagged PSA-offered
load is just A(t — E[S])E[S]. The good performance of
lagged PSA is consistent with the various refinements
proposed by Green et al. (2001). We show that sim-
ple PSA performs worse than ISA and lagged PSA by
plotting the delay probabilities for these three staffing
rules in Figure 8. The performance of simple PSA here
is nowhere near as bad as it was in the challenging
M,/M/s, example in Jennings et al. (1996) and as it
is for the example here in §4 (see the online supple-
ment), but there are clear departures from the perfor-
mance targets in Figure 8. The PSA delay probabilities
are significantly below the targets during hours 4-6
with rapidly increasing arrival rates. The differences
among the corresponding staffing functions in Fig-
ure 9 look small, but those small differences can have
a significant impact, because the arrival-rate function
changes rapidly.

We also observe that ISA is not as successful as
before, because the target delay probability is not
achieved accurately at the beginning and at the end
of the day. This phenomenon is even more evident
for other performance measures (see the online sup-
plement). However, this weak performance is caused

by the extremely low arrival rates that prevail at the
beginning and the end of the day. When the load
is small, the addition or removal of a single server
will greatly affect the delay probability. On the pos-
itive side, there is a clear time-interval—from hours
5 to 18—in which all performance measures are sta-
ble. Finally, we remark that there is excellent match-
ing between the Garnett function and the empirical
results, just as in Figure 6; see the online supplement.

6. Theoretical Support in
the Case 6 =

6.1. Relation to Other Models

In one special case, we can analyze the M,/M/s,+ M
model in considerable detail. That is the case we con-
sidered in §§4 and 5, in which 6 = u. (As in §4, we let
those both be 1.) With the condition 6 = u, it is easy
to relate the M,/M/s, + M model to, first, the corre-
sponding M,/M /oo model with the same arrival-rate
function and service rate and, second, a correspond-
ing family of steady-state distributions of stationary
M/M/s + M models, indexed by t, with the same ser-
vice and abandonment rates, but with special arrival
rate that depends on time ¢.

Let {s,: t >0} be an arbitrary staffing function. For
simplicity, assume that all systems start empty in the
distant past (at time —o0). By having A(t) =0 for t <t,,
we can start arrivals at any time, #,. The first observa-
tion is that, for any arrival-rate function {A(t): t > 0}
and any staffing function {s,: t > 0}, the stochastic pro-
cess {N,: t >0} in the M,/M/s; + M model with 6 = u
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has the same distribution (finite-dimensional distribu-
tions) as the corresponding process {N°: t > 0} in the
M, /M /oo model, because the birth and death rates are
the same.

The second observation is that, for both these mod-
els, the individual random variables N, and N* have
the same Poisson distribution as the steady-state
number in system N in the corresponding stationary
model with arrival rate m{°.

6.2. Waiting Times and Abandonment
Probabilities

Let W, be the virtual waiting time at time t (until ser-
vice, i.e., the waiting time in the queue that would
be spent by an infinitely patient customer arriving at
time t), and let P/ be the virtual abandonment proba-
bility at time t (i.e., the probability of abandonment
for an arrival that would occur at time t), both in the
M,/M/s; + M model. These quantities are consider-
ably more complicated than N,.

Even though it is difficult to evaluate the full distri-
bution of W,, we can immediately evaluate the virtual
delay probability, because it clearly depends only on
what the customer encounters on arrival at time t.
Hence, we have

P(W,;>0) = P(N, > 5) =P(N" = 5,)
= P(Poisson(m;°) > s,), (12)

where m}° is the offered load in (2), just as in (5), only
here the infinite-server approximation is exact.

Next we observe that P™ = E[F(W,)], where F
is the time-to-abandon cdf, so that it suffices to
determine the waiting-time distribution. Here is an
important initial observation: conditional on the event
that W, > 0, whose probability we have characterized
above, W, is distributed (exactly) as the first passage
time of the (Markovian) stochastic process {N,: u > t}
from the initial value N, encountered at time { down
to the staffing function {s,: u > t}, provided that we
ignore all future arrivals after time ¢. In other words,
W, is distributed as the first passage time of the pure-
death stochastic process with state-dependent death
rate N, for u >t down from the initial value N; to
the curve {s,: u > t}. As a consequence, the distribu-
tion of W, and the value of P depend only on N,
and the future staffing levels, i.e., {s,: u > t}. The time-
dependent arrival-rate function contributes nothing
further.

It is easy to see that we can establish stochastic
bounds on the distribution of W, if the staffing level is
monotone after time ¢; then setting s, =, for all u >t
will yield a bound. We can go further based on this
observation if we make approximations. If the num-
ber of servers is large, then W, will tend to be small,
so that it is often reasonable to make the approxima-
tion s, & s, for all u > t. We make this approximation

not because the staffing level should be nearly con-
stant for all u after t, but because we think we only
need to consider times u slightly greater than ¢.

If the future staffing-level approximation held as
an equality, then we would obtain the following app-
roximations as equalities: W, ~ W, and P’ ~ P,
where the constant staffing level in the stationary
M/M/s+ M model on the right-hand sides is cho-
sen to be s, and the constant arrival rate is chosen to
be AMOL in (7). Given these approximations, we can
use established results for the stationary M/M/s+ M
model, e.g., as in Garnett et al. (2002) and Whitt
(2005). Algorithms to compute the (exact) distribution
of W, are given there, including the corresponding
conditional distributions obtained when we condition
on whether the customer eventually is served.

7. Algorithm Dynamics

In this section, we establish the convergence of ISA
for the M,/M/s, + M model. In doing so, we disre-
gard statistical errors caused by having to estimate
the delay probabilities associated with each staffing
function in the simulation.

To prove convergence, we use sample-path stochas-
tic order, as in Whitt (1981). We say that one stochas-
tic process {Nt(]): 0 <t < T} is stochastically less than
or equal to another, {Nt(z): 0 <t < T}, in sample-path
stochastic order and write

IND:0<t<T)<,{N®:0<t<T)}, (13)
if
E[f(IN: 0<t<TPI<,E[f(INP: 0<t<T)] (14)

for all nondecreasing real-valued functions f on the
space of sample paths. We have the ordinary stochas-
tic order for the individual random variables Nt(l) and
N? and write N <, N if E[f(N{")] < E[f(N?)]
for all nondecreasing real-valued functions on the real
line; see Chapter 9 of Ross (1996) and Miiller and
Stoyan (2002). Clearly, sample-path stochastic order
as in (13) implies ordinary stochastic order for the
individual random variables for all t. For the con-
vergence, we only need ordinary stochastic order for
each time t, but to get that we need to properly
address what happens before time ¢ as well.

Here is the key stochastic-comparison property for
the M,/M/s, + M model:

THEOREM 7.1 (STocHASTIC COMPARISON). Consider
the M,/M /s, + M model on the time interval [0, T], start-
ing empty at time 0. If r > 1 and sV <s? forall t,0<
t<T,orifr<1and st(l)zst(z)forull t,0<t<T, then

IND:0<t<T)<,(N®:0<t<T). (15
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Figure 10

Oscillating Algorithm Dynamics when r = 6 = 0: Staffing Levels in the First, Second, and Final Iterations
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Proor. Here is the key fact: The death rates depend
systematically on the number of servers, s,. When
r>1 (r < 1), the death rates at time f decrease
(increase) as s, increases. The ordering of the death
rates in the two birth-and-death processes makes it
possible to achieve the sample-path ordering. Indeed,
we justify the relation (15) by constructing special
versions of the two stochastic processes on the same
underlying probability space so that the sample paths
are ordered with probability 1. As discussed in Whitt
(1981) and proved by Kamae et al. (1977), that special
construction is actually equivalent to the sample-path
stochastic ordering in (15). The sample-path order-
ing obtained ensures that a departure occurs in the
lower process whenever it occurs in the upper process
and the two sample paths are equal. To start the con-
struction, we let the two processes be given identical
arrival streams. Then we construct all departures (ser-
vice completions or abandonments) from those of the
lower process at epochs when the two sample paths
are equal. Suppose that at time ¢ the sample paths are
equal: N = Nt(z) =k. Then, at that ¢, the death rates
in the two birth-and-death processes are necessarily
ordered by 8;(k) > 8,(k). We only let departures occur
in process 2 when they occur in process 1, so the two
sample paths can never cross over. When a departure
occurs in process 1 with both sample paths in state
k, we let a departure also occur in process 2 with
probability 8,(k)/6;(k), with no departure occurring
in process 2 otherwise. This keeps the sample paths
ordered with probability 1 for all . At the same time,
the two stochastic processes individually have the cor-
rect finite-dimensional distributions. O

The simulation experiments show that the way the
staffing functions converge to the limit depends on
the ratio » = 0/u: Whenever r > 1, we encounter
monotone dynamics. Whenever r < 1, we en-
counter oscillating dynamics; and whenever r =1,

T T T T T T T T T T T T T T
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we encounter instantaneous convergence. As shown
in §6, when r =1, the number in the system is inde-
pendent of the staffing function, so we obtain conver-
gence in one step.

An example of the oscillating dynamics is shown
in Figure 10, where staffing levels are shown for the
first two and final iterations for the model in §4 with
pw=1and r =60 =0 (no abandonment).

THEOREM 7.2 (CONVERGENCE). Consider the M,/M/
s, + M model on the time interval [0, T], starting empty
at time 0. Suppose that we consider piecewise-constant
staffing functions that only can change at multiples of
A > 0. Suppose that in each iteration n we can obtain the
actual stochastic process {Nt("): 0 <t < T} associated with
the staffing function {s{": 0 <t < T} (without statistical
error). Suppose that s =00 forall t,0<t<T.

@) If r>1, then s" <s™ for all n>m=>0 and there
exists a positive integer n, such that

s =" =" forallt and n=>n,. (16)
(b) If r <1, then there exist two subsequences, {st(z")}

and {s*VY, such that s | s and s 4 5.
) > St(2n+3) > st(2n+1) > st(l) (17)

forall t, 0 <t <T, and for all n > n,. Moreover, there
exists a positive integer n, such that

(2m) (219)

2 1 2n+1
5@ o @uo+1) _ (2n+1)

dd _
=5 =5

(18)

__ oeven O
=S5 > S;

forall t,0<t<T, and for all n> n,.

Proor. Given that st(o)

= oo, we necessarily have
st(o) > st(l) for all t, 0 <t < T. Hence we have the
ordering of the initial ordering of the staffing func-

tions that lets us apply the stochastic order. We then
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proceed recursively. As a consequence of the sample-
path stochastic order, we get ordinary stochastic order
in (15), and we get ordinary stochastic order NY <,
N for all t. Ordinary stochastic order is equivalent
to the tail probabilities being ordered: P(N; Vs x) <
P(Nt(z) > x) for all x, which implies the ordering for
the staffing functions at time t. In particular, sup-
pose that

P(N? >s?) <a < P(N? > s —1).

Because P(Nt(l) > st(z)) < P(Nt(z) > sfz)) < a, necessarily
s <s?.

Case 1: r > 1. For s,( = 0o, we necessarily start with
sfo) > sfl) for all ¢, which produces first Nt(l) <g Nt(o)
and then st(z) < st(l) for all t. Continuing, we get Nt(”)
stochastically decreasing in n and s decreasing in 7,
again for all f. Because the staffing levels are integers,
if we use only a finite number of values of ¢, as in our
implementation, then we necessarily get convergence
in finitely many steps.
Case 2: r < 1. For s =00, we again necessarily start
with sfo) > sfl) for all t. That produces first Nt(l) >y Nt(o)
and then sfo) > s? > st(l) for all t. Afterwards, we get
Nt(l) >y Nt(z) > Nt(o) and sfo) > sfz) > st@ > sfl) for all ¢.
Continuing, we get N> stochastically increasing in
n, and NV stochastically decreases in n, for all ¢.
Similarly, s decreases in 1, and s*""*" increases in n

Y S , ¢
for all t. We thus have convergence, to possibly differ-
ent limits. The staffing levels are integers, so if we use
only finitely many values of ¢, as in our implementa-
tion, then we necessarily get convergence in finitely
many steps. O

We remark that we also obtain the convergence in
Theorem 7.2 with other initial conditions. In particu-
lar, it suffices to let s\ be sufficiently large for all ¢.
For r > 1, it suffices to have st(o) > sIA for all t. For
r <1, it suffices to have sfo) > spven for all t.

We conclude this section by making some empir-
ical observations, for which we have yet to develop
a supporting theory. We also observed that the target
delay probability a strongly influenced the dynamics.
In particular, higher values of «a cause larger oscilla-
tions in the oscillating case and slower convergence to
the limit in all cases. Finally, we also observed a time-
dependent behavior in the convergence of s, We
observed a greater gap as time increased. For exam-
ple, let I, = inf{j: s = s,(]) for all i > j}. We observed
that [, > I, for all t, > t;. An illustration can be
viewed in Figure 10. This time-dependent behavior is
understandable, because the gap between two differ-
ent staffing levels persists across time, so that there
is a gap in the death rates at each t. Hence, as t gets
larger, the two processes can get further apart. Thus
the gap can first decrease more at the initial times.

0)

When it reaches the limit at earlier times, the gap will
still have to decrease more at later times.

8. Conclusions

We have developed a simulation-based algorithm—
ISA—that generates staffing functions for which per-
formance has been shown to be stable in the face of
time-varying arrival rates for the M,/M/s,+ M model.
The results have been found to be remarkably robust,
applying to all forms of time variation in the arrival-
rate function, with or without abandonment, covering
the ED, QD, and QED operational regimes. All exper-
iments were done with nine target delay probabilities,
ranging from a = 0.1 (QD) to « =0.9 (ED). In §7, we
proved that the ISA converges for the M,/M/s, + M
model.

In our simulation experiments, we found that ISA
performs essentially the same as the MOL approx-
imation, with and without customer abandonment.
Thus, we provided additional support for MOL and
the square-root-staffing formula in (6) based on it
(using arrival rate AM in (7)). As we saw in §5, in
many applications the MOL approximation is well
approximated itself by lagged PSA and, in easy cases,
by PSA itself. To implement the MOL approximation
with abandonments, we applied many-server heavy-
traffic limits from Garnett et al. (2002), which yield
the Garnett function in (11), just as Jennings et al.
(1996) applied applied many-server heavy-traffic lim-
its from Halfin and Whitt (1981) without customer
abandonment.

Finally, we found that the simple approach of
staffing to the offered load is remarkably effective in the
QED regime (when a = 0.5). That was substantiated
time and again by having the ISA staffing function
siA fall on top of the offered load m, as in case 3
in Figure 2. Of course, abandonment plays an impor-
tant role; the staffing is always above the offered load
without abandonment. When the service times are
short, the offered load m{° may agree closely with
the PSA offered load m!®* = A(t)E[S]; then staffing
to the offered load reduces to the naive deterministic
approximation—staffing to the PSA offered load m>.
However, it is good to be careful, because even for the
realistic example in §5, PSA performed significantly
worse than ISA, MOL, and lagged PSA.

There is much yet to be done. Listed are some nat-
ural next steps:

1. As discussed in §4, for the M,/M/s, + M model,
it remains to explore alternative staffing methods to
achieve better time stability of abandonment proba-
bilities and expected waiting times, especially under
heavy loads, but experience indicates that the delay
probability is a good performance target.

2. A great advantage of ISA is its generality. How-
ever, it remains to explore the ISA for additional
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queueing systems. We already have had partial
(successful) results for deterministic and log-normal
service-time distributions. It remains to consider other
service-time distributions for the same models; it
remains to consider other models. Some other models
to analyze appear in Mandelbaum et al. (1998), e.g.,
queues with retrials and priority classes. Of special
interest for actual call centers are multiclass models
with skill-based routing. For call centers, our ulti-
mate goal is to treat realistic multiserver systems with
multiple call types and skill-based routing (SBR), but
that remains to be done. In that setting, it is natu-
ral to apply SBR methods for stationary models after
using the MOL approximation in (7) for each call
type at time t. Once we have reduced the problem
to a stationary SBR model, we may be able to apply
the staffing method in Wallace and Whitt (2005).
Approaches based on these ideas remain to be inves-
tigated. With networks of queues, the MOL approach
can be applied together with results for networks of
IS queues (see Massey and Whitt 1993).

3. We proved that ISA converges for the M,/M/
s; + M model and we observed that it usually does
so quite quickly, but it remains to analyze the conver-
gence of the algorithm more generally. Even for the
M,/M/s;+M model, some of the phenomena have
not yet been adequately explained.

4. For one special case—the one with 6 =u—we
have provided strong theoretical support for our
methods in §6 and the online supplement. In the sup-
plement, we exploited the mathematical framework
of service networks in Mandelbaum et al. (1998). It
would be nice to prove much more generally that,
under proper scaling, the actual time-dependent prob-
ability of delay under ISA indeed converges to the
specified target as scale increases.

9. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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