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Abstract

In this note we identify a phenomenon for processor sharing queues that is unique
to ones with time-varying rates. This property was discovered while correcting a proof
in Hampshire, Harchol-Balter and Massey [5]. If the arrival rate for processor sharing
queue has unbounded growth over time, then it is possible for the number of customers
in a processor sharing queue to grow so quickly that a newly entering job never finishes.
We define the minimum size for such a job to be the event horizon for a processor sharing
queue. We discuss the use of such a concept and develop some of its properties. This
short article serves both as errata for [5] and as documentation of a characteristic feature
for some processor sharing queues with time varying rates.

Keywords: processor sharing queues, fluid limits, diffusion limits, transient behavior,
dynamical queueing systems, uniform acceleration, sojourn times, virtual customers.

1 Introduction

In recent years there has been an increased research interest in the analysis of processor sharing
queues. Examples of this research include two papers of Gromoll, Puha and Williams [3] and
Puha and Williams [7]. These two papers provide a general framework for studying the fluid
limits of GI/GI/1/PS processor sharing queues via a measure-valued state descriptor, where
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the queue length and the residual service time process are modeled as measure-valued pro-
cesses. Additionally, the papers by Puha and Williams [6] and Gromoll [2], develop diffusion
limit results as well.

The work of Hampshire, Harchol-Balter and Massey [5] derives fluid and diffusion limit
theorems for the sojourn time of a virtual customer in an Mt/M/1 processor sharing queue
with time varying or non-homogeneous, Poisson arrival rates. This note, based on work in
Hampshire [4], is an extension of [5]. Here we chronicle a phenomenon that can only be
observed in a processor sharing system with time varying rates.

To begin, we let Q = {Q(t) | t ≥ 0 } be a positive (including zero) stochastic process.
As in Hampshire, Harchol-Balter and Massey [5] we construct an associated, positive process
{T (x) |x ≥ 0 } where T (x) = ∞ unless it solves the equation

x =

∫ T (x)

0

dt

1 + Q(t)
. (1.1)

When Q is the queue length process for a processor sharing queue, then the random variable
T (x) is the sojourn time for a virtual customer with constant job size x that arrives at time
0. By virtual, we mean that the processing time T (x) of this job is affected by the presence
of the current jobs and potentially by the new jobs that arrive in the future. However, this
specific job has no effect on the processing times of any of the other jobs in the queue.

We now define the event horizon for a virtual job in a processor sharing queue to be a
random variable X∞, where

X∞ ≡
∫ ∞

0

dt

1 + Q(t)
. (1.2)

Unlike the first-in, first-out (FIF0) service discipline, it is possible for a job to arrive to a finite
queue but the arrival rates for the subsequent jobs grow so quickly that this job never finishes
under the processor sharing service discipline. For any job of size x, we then have

{T (x) < ∞} = {x < X∞}. (1.3)

Below we give some simple bounds for a finite event horizon.

Theorem 1.1 If our generalized queueing system process {Q(t) | t ≥ 0 } has the lower bound
of

Y · tα ≤ Q(t) (1.4)

for all t ≥ 0, where Y > 0 is a random variable and α > 1 is a constant, then the resulting
event horizon is finite with

0 < X∞ ≤ π/α

Y 1/α · sin (π/α)
. (1.5)

Moreover, equality holds for X∞ and its upper bound if and only if Q(t) = Y · tα for almost
all t ≥ 0. Finally, if the queueing system process has a linear upper bound or

Q(t) ≤ Z · t (1.6)

for all sufficiently large t, where Z > 0 is a random variable independent of t, then the event
horizon is always infinite.

2



Proof: Given the bound (1.4) and the integral formula in Gradshteyn and Ryzhik [1] (see
3.241 on page 340 for the case of ν = 2), we have a finite event horizon since∫ ∞

0

dt

1 + Q(t)
≤
∫ ∞

0

dt

1 + Y · tα
=

1

Y 1/α
· 2

α
·
∫ ∞

0

s(2/α)−1ds

1 + s2
=

1

Y 1/α
· π/α

sin (π/α)
. (1.7)

Moreover, if we are given the bound (1.6), then we have∫ ∞

0

dt

1 + Z · t
≤
∫ ∞

0

dt

1 + Q(t)
. (1.8)

and now the event horizon is infinite.

Observe that queues with bounded arrival rates satisfy this linear growth rate. This means
that the phenomenon of a finite event horizon only occurs in queues with growth rates that
are time-varying, not constant. As an example, consider the case of a deterministic model
with input rate λ(t) ≡ 2at and output rate µ(t) ≡ 2bt with a > b. We then have

Q(t) ≡
∫ t

0

(
λ(s)− µ(s)

)
ds = (a− b) · t2 and X∞ =

π

2 ·
√

a− b
. (1.9)

Any job arriving at time 0 that is the size of X∞ or larger takes an infinite amount of time to
finish under the processor sharing service discipline.

Now consider a family of scaled queueing processes {Qη/η | η > 0 } as constructed in [5].
For a given job size x, the corresponding sojourn times are denoted by {T η(x) | η > 0 }.
Moreover, assume that this family of queueing processes has a functional strong law of large
numbers limit where

lim
η→∞

sup
0≤t≤τ

∣∣∣∣Q(0)(t)− 1

η
Qη(t)

∣∣∣∣ = 0 a.s. (1.10)

for all τ > 0, where
{

Q(0)(t) | t ≥ 0
}

is some positive deterministic process. In [5] we asserted
that such a family of queueing processes has a corresponding limit theorem for their processor
sharing sojourn times. We restate the theorem here and correct the proof given there. Now
our result extends to the cases of finite and infinite event horizons for the limiting fluid model
which we denote by X

(0)
∞ .

Theorem 1.2 If x is any job size, then we have

lim
η→∞

T η(x) = T (0)(x) a.s. where x =

∫ T (0)(x)

0

dt

1 + Q(0)(t)
. (1.11)

Proof: First, we assume that

P

{
lim inf

η→∞
T η(x) < ∞

}
> 0 (1.12)

This implies that there exists a random variable T and a random subsequence { η(k) | k ≥ 0 }
where

P
{

lim
k→∞

T η(k)(x) = T < ∞
}

> 0 and lim
k→∞

1

η(k)
Qη(k)(t) = Q(0)(t) a.s. (1.13)
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The a.s. convergence follows from (1.10). By (1.1) and dominated convergence, we have for
all k

x =

∫ T η(k)(x)

0

dt

1 + Qη(k)(t)/η(k)
=

∫ T

0

dt

1 + Q(0)(t)
. (1.14)

Hence T (0)(x) = T < ∞ and so x < X
(0)
∞ .

Now for any δ > 0, we have

x <

∫ T (0)(x)+δ

0

dt

1 + Q(0)(t)
. (1.15)

Hence, there exists an ε > 0 such that

x =

∫ T (0)(x)+δ

0

dt

1 + ε + Q(0)(t)
. (1.16)

Using (1.10),we have for all sufficiently large η

sup
0≤t≤T (0)(x)+δ

∣∣∣∣Q(0)(t)− 1

η
Qη(t)

∣∣∣∣ ≤ ε a.s. (1.17)

It follows that

1

η
Qη(t) ≤ Q(0)(t) + sup

0≤t≤T (0)(x)+δ

∣∣∣∣Q(0)(t)− 1

η
Qη(t)

∣∣∣∣ ≤ Q(0)(t) + ε a.s. (1.18)

for all 0 ≤ t ≤ T (0)(x) + δ, which gives us

x =

∫ T

0

dt

1 + ε + Q(0)(t)
≤
∫ T

0

dt

1 + Qη(t)/η
a.s. (1.19)

This implies that T η(x) ≤ T (0)(x) + δ < ∞ a.s. for all sufficiently large η and so

lim sup
η→∞

T η(x) ≤ T (0)(x) + δ < ∞ a.s. (1.20)

Now all subsequences of {T η(x) | η > 0 } have convergent subsequences with the same limit
T (0)(x), so (1.11) holds.

Finally, what we first proved can be restated as x ≥ X
(0)
∞ implies

P

{
lim inf

η→∞
T η(x) < ∞

}
= 0, (1.21)

which is equivalent to saying
lim
η→∞

T η(x) = ∞ a.s. (1.22)

Since x ≥ X
(0)
∞ means that T (0)(x) = ∞, then (1.11) holds.
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This theorem does not necessarily imply a convergence result for event horizons. Consider
a scaled family of deterministic processes {Qη | η > 0 } where

Qη(t) ≡ η ·

(
Q(0)(t)−

(
Q(0)(t) + 1

)2
Q(0)(t) + 1 + t + η

)
, (1.23)

These are positive processes as long as η ≥ 2 and Q(0)(t) ≥ 1 for all t ≥ 0. We then have

sup
0≤t≤T

∣∣∣∣Q(0)(t)− 1

η
Qη(t)

∣∣∣∣ ≤ 1

η
· sup

0≤t≤T

(
Q(0)(t) + 1

)2
, (1.24)

which means that (1.10) holds when Q(0) is bounded on compact intervals of time. Moreover,
we have the relation

1

1 + Qη(t)/η
=

1

1 + Q(0)(t)
+

1

t + η
, (1.25)

so with the proper choice of the process Q(0), we have

X(0)
∞ =

∫ ∞

0

dt

1 + Q(0)(t)
< ∞ but Xη

∞ =

∫ ∞

0

dt

1 + Qη(t)/η
= ∞ for all η ≥ 2. (1.26)

However using Fatou’s lemma, we can say in general that

X(0)
∞ ≤ lim inf

η→∞
Xη
∞. (1.27)
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