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Abstract This tutorial presents recent developments in the management of communications
services and applies broadly to services involving the leasing of shared resources. These
problems are more realistically modeled by queues with time-varying rates or more
simply, dynamic rate queues. We first provide a review and summary of relevant results
for various fundamental dynamic rate queues. The focus here is on approximations of
these queueing models by low-dimensional dynamical systems.

The dynamic optimization of constrained dynamical systems is based on the calcu-
lus of variations and its various incarnations over the past three centuries. We discuss
these methods in the context of Lagrangians, Hamiltonians, and Bellman value func-
tions. Finally, we provide examples where we apply these optimization techniques to
dynamic rate queues motivated by communications decision problems.

Keywords Bellman value function; calculus of variations; conservation principles; differen-
tial equations; dynamical systems; Hamiltonian; Lagrangian; Lagrange multipliers;
Legendre transforms; opportunity costs; optimal control; Poisson brackets

1. The Operations of Communication Systems and Services

1.1. Four Canonical Issues

We begin by discussing the operational issues motivated by the communications industry.
This is the business sector that created the telephone network in the beginning of the 20th
century and gave birth to the mathematical field of queueing theory. Around the middle
of the 20th century, or the 1960s, queueing theory was found to have applications to the
communication of computer systems. The mathematics of queueing has taken on a life of its
own since then and has applications to all services involving the leasing of shared resources.

A manager of a communications business has a continual interest in offering various ser-
vices as efficiently as possible in terms of the company resources. We can express these
concerns in terms of four canonical issues: performance, pricing, provisioning, and priori-
tization. The first one is that of service performance. These are metrics that predict the
availability of resources needed for service to the typical, newly arriving customer. This is
expressed in terms of the past demand and usage of these resources by previous customers.

The second issue is service pricing. If the price is too high, then no one may use the
service. If the price is too low, then the cost of the resources used by the business providing
the service may exceed the revenue obtained. A decision must be made as to what is the
most strategic price in terms of optimizing revenue without compromising some target level
of service performance. If the general strategy for a decision can be expressed in terms of
a finite set of simple steps, then we call this a policy. Since the larger goal of operations
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research is to make a strategic decision, our ultimate objective is to determine an optimal
policy.

The third issue is resource provisioning. This is the efficient design of the system so that
just enough or an optimal number of resources are made available to achieve an acceptable
target level of service performance. Here again, a policy must be developed to determine
this critical amount.

Finally, there is the issue of resource prioritization. This is the efficient allocation of
resources to distinct classes of customers. An optimal policy is one that accounts for the
differing levels of demand, performance needs, and payment for services by these differing
classes of customers.

The issue of service performance calls for managers to assume a passive role. They need
only observe the history of the system to make their predictions. Classically, queueing the-
ory has studied the static steady-state behavior of constant rate queues. We typically model
these systems by time-homogeneous Markov processes. However, these models fail to capture
everyday dynamic rate queueing phenomena such as the lag between the time of the peak
demand for services and the time of the peak load. It is the latter time and not the former
when the largest amount of service resources are needed. Hence to make more accurate
performance predictions, we need to study dynamic rate queues. The underlying mathe-
matics for these models come from the study of time-inhomogeneous Markov processes and
dynamical systems.

Moreover, the remaining three issues of pricing, provisioning, and prioritization all require
an active role on the part of the managers to develop optimal policies. To analyze these
problems, we model the forecasted demands for these services as random counting processes.
We model the resulting communication service usage as a dynamic rate queue. In turn, we
model these queueing systems as discrete state Markov processes. Assuming a deterministic
initial load and a finite time horizon makes the underlying Markov process transient, even
if it is time homogeneous. Our goal is to develop optimal policies by applying dynamic
optimization to these processes.

Finding such optimal policies can be difficult if not computationally intractable. Our
approach is to develop an approximate analysis by optimizing deterministic dynamical sys-
tems that are good approximations of the given Markov process queueing models. The
approximate dynamic optimization policies developed here for queueing models result in
open-loop controls that depend on time and the parameters of the problem. In special cases
feedback or closed-loop controls may be obtained. However, this tutorial focuses on open-
loop controls.

1.2. Literature Review

There is a vast literature in operations research relating to sequential decision making under
uncertainty. We do not attempt to survey or cite all these works here. We merely point to
a few streams that relate to the present tutorial and the control of dynamic rate queues.
There is a large and growing stream of research on the control of queueing systems that
considers the exact optimization of steady-state queueing systems over an infinite time hori-
zon. Sennott’s book [45] examines the control of queueing systems using stochastic dynamic
programming. The textbooks of Puterman [43] and Bertsekas [5], among others, provide the
foundation for using Markov decision processes (MDP) for the exact optimization of station-
ary queueing systems. Miller [39] provides optimality conditions for finite horizon continuous
time MDP with finite action spaces. There are many researchers who have extended the
MDP framework to develop policies for nonhomogeneous stochastic models with infinite
actions spaces. As an example of this stream, Lewis and Yoon [31] consider both pricing
and admission controls for a multiserver queue with a periodic arrival rate over an infinite
time horizon. They use a pointwise stationary approximation (PSA) of the queueing process
(see Green and Kolesar [12]). An optimization problem is then solved over each disjoint
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time interval where stationarity is assumed. Additionally, the work of Fu et al. [11] con-
siders the staffing of a transient queue using a pointwise stationary approximation and a
nonhomogeneous MDP.

Another stream of work develops finite horizon analysis and approximations for nonho-
mogeneous MDP. A series of papers by Alden and Smith [2], Bean et al. [3], Hopp [21], and
Hopp et al. [22] develop optimality conditions and rolling horizon methods for nonhomoge-
neous MDP.

We focus on the approximate dynamic optimization of dynamic rate queues over a finite
time horizon. This tutorial summarizes the stream of research that uses dynamic systems
to model the service system and optimal control theory to perform the optimization. An
example of a paper in this stream is the work of Agnew [1], who considers dynamic control
for congestion prone systems. The authors have employed the methods developed in this
tutorial in a series of papers (Hampshire [14], Hampshire et al. [18, 19]).

2. Fundamental Dynamic Rate Queues

In this section we give a brief summary of queueing theory from a communications per-
spective. The first queueing paper is said to have been written in 1917 by Erlang [7] to
determine the blocking probability (“all circuits are busy”) for telephone trunk lines. A
natural historical motivation for the field is to organize queueing models into the following
four fundamental types: service demand models, revenue demand models, loss models, and
delay models.

2.1. Service Demand Models

Service demand is analyzed through the study of arrival traffic models where we simply
count the number of customers making service requests. For dynamic rates, we can start with
the following simple assumptions for an arrival process. We define a process {A(t)|t >0}
in terms of a positive, deterministic function {\(¢)|¢ >0}, where

(1) We have a simple (unit jump) random counting process {A(t)|¢>0}.

(2) The mean number of jumps in a time interval (s,t] is f: A(r) dr.

(3) The random numbers of jumps during disjoint times intervals are mutually indepen-
dent random variables.

By a theorem due to Prékopa [42], these assumptions uniquely characterize a nonhomoge-
neous Poisson process, where

n! ’

t

P{A(t)— A(s)=n} =exp (—/ A(r) dr)
S

for all integers n > 0. If we view customers as a large population of independent actors,

then these three assumptions are reasonable modeling assumptions. This makes the Poisson

process a natural model for service demand traffic. The only adjustment that needs to be

made from the perspective of classical queueing theory is to consider nonhomogeneous as

well as homogeneous Poisson processes.
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2.2. Service Resource Demand Models

Service resource demand is the total amount of service resources that are requested by
the customers at any given time. Communication examples of such resources are telephone
trunk lines, radio channels, bandwidth, or call center agents. The simplest service resource
demand queueing models are ones with nonhomogeneous Poisson arrivals and an infinite
number of servers where the service time is the service resource. Since the resources that
customers request are not necessarily the same as the resources they actually receive, we
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can model these requests as a sequence of independent and identically distributed, positive
random variables. In classical telephony, this type of service demand is referred to as the
offered load.

For the resulting offered load process {@Qo(t) |t >0}, each Qo (t) has a Poisson distribu-
tion or

P{Qoo(t) = n} = e_qoo(t) . %ﬁ

for all positive integers n, including zero. However, this offered load process is not a Poisson

process. As discussed in Eick et al. [6], the resulting deterministic, mean offered load process
{go(t) |t >0} equals

t

4o(t)=E [ A(r) dr] =E[\t—-S.)]- E[S],
t—S

where the random variable S has the same distribution as any of the i.i.d. service times.

The random variable S, is defined to have a stationary excess distribution from S, where

P{S. <t} = ﬁ/o PLS > s} ds.

This is the distribution for the remaining time of an interrupted service from a renewal
process for these i.i.d. times. If S has a finite second moment, then S, has a finite mean
where
E[S?]
E[S)]=—=.
[ 8] 2 . E[S]
It can be shown that the distributions for S and S, are the same if and only if S is
exponentially distributed or

S. L5 if and only if P{S >t} =e " where E[S]=1/p.

From the properties of the Poisson distribution, it follows that E [Quo(t)] = goo(t) for all
t > 0. We can make this offered load process Markov by letting the service times (the amount
of time customers are in service) have an exponential distribution with mean rate p. The
mean offered load {quo(t) |t >0} then solves the ordinary differential equation

o)) = M0) — - ).

Observe that for the case of A being a constant, we have
i goo (1) = p= A/ .

For the time-homogeneous case, p equals the steady-state mean offered load.

2.3. Service Loss Models

Inspired by voice communications, service loss models are one way to handle the reality of
limited resources. Customers who arrive when there are no available service resources are
told to go away. In telephony, this is the experience of receiving the message that all circuits
are busy. For the case of a constant rate or time-homogeneous Poisson arrival process and
a finite number of C servers, we have the classical Erlang loss model or M/M/C/C queue.
The long run steady-state probability of all circuits being busy is given by B¢ (p), defined as
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where p is the steady-state mean offered.
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Using the theory of time-reversible Markov processes (see Kelly [27]), we can also show
that

fo(p) = Jlim P{Qeyc(t)=C} = lim P{Qu(t) = C|Qu(t) <.

In general, the steady-state distribution for the Erlang loss system is the steady-state dis-
tribution for the offered load system conditioned on being less than or equal to the number
of servers C. Because of the insensitivity results for the Erlang loss model in steady state,
these steady-state distributional results extend to the non-Markovian case of general service
distributions.

For the case of nonhomogeneous Poisson arrivals, however, the transient probability of
blocking for the Erlang loss model no longer has this conditional Poisson distribution. This
is true despite the fact that its offered load counterpart still has a Poisson distribution.
Regardless, this conditional Poisson distribution is still a good estimation of the transient
distribution for the Erlang loss model and this technique is called the modified offered load
approzimation (see Jagerman [24] as well as Massey and Whitt [37]).

We can still use the dynamical system of the mean offered load for approximating the
performance of the loss system queueing model, if we constrain the dynamical system to
stay below some given threshold value. In practice, given C' and 0 < e < 1, we need to find
the mean offered load value 6, where

50(9) = €.
The modified offered load approximation then tells us that the dynamics of the event,

—ov <
Ogl%XTP{QC/C(t) C}<e

can be estimated by the approximating event of

) < 6.
%ﬁg%d)_

2.4. Service Delay Models

Service delay models, as inspired by data communications, are another way to handle the
allocation of scarce resources. The customers that arrive when the necessary resources are not
available for service are told to wait until the resources are available. An example is the delay
experienced when downloading a file from a Web server that is heavily used. Kleinrock [28]
showed that a single server queue with a processor sharing (PS) service discipline could
approximate the performance of CPU server with a round robin service discipline. Now let
the constant A be the Poisson arrival rate and the constant 1/u be the average size for
an exponentially distributed job size for the queueing process {Qf}soo (t)|t > 0}. Using the
theory for steady-state distributions of Markov chains and processes gives us

(L=p)p" if p<1,
0 if p>1.
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Jim P{QTRL (1) =n} = {

The PS service discipline has a natural scale invariance that leaves service times
unchanged. If we set 1 equal to a positive integer, then dividing each job into 1 even parts
and processing these jobs in parallel does not change the processing time of the collective
original job. The n-fold i.i.d. superposition of nonhomogeneous Poisson arrivals with rate
function A(t) yields a nonhomogeneous Poisson process with rate function 7 - A(t). Jobs
whose size is exponentially distributed with rate p are then exponentially distributed with
rate - u when divided by the scale factor 7. This is a motivation for the asymptotic analysis
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of uniform acceleration for time-inhomogeneous Markov processes (see Massey [35] and later
Massey and Whitt [38]).
If we let {Qlf/soo (t;m) |t >0} be this newly scaled queueing process, then we have

. o fa— e it e <1,

where

p()=A(t)/p  and p*(t)zoiggt%'

A proof of this result can be found in both Massey [35, 36]. The PS interpretation of uniform
acceleration is discussed in Hampshire et al. [17].

Through the theory of strong approximations (see Kolmés et al. [29], Ethier and Kurtz
[8]), we can also apply these same uniform acceleration asymptotics directly to the random
sample path behavior of this queueing process and obtain

1
lim sup |-QY® tin) — ps t‘:O a.s.,
7]—>000St£T an/oo( 77) ql/oo( )

where if ql/oo(O) =0, then

T
PS —
q t:max/ A(s) —p)ds.
Pt =gma [ () -

The resulting deterministic process {g} / 5 ()|t >0} is called the fluid approzimation for
single server queues as discussed in Kleinrock [28]. The proof of this functional strong law
of large numbers is given in Mandelbaum and Massey [32]. Note that the fluid model is also
a nonsmooth dynamical system of the form

qu/soo( t) = (A1) = 1) {100 (1) > 0} + (A1) — )™ - {a1 ) (1) = 03,

where ¢ / (0) =0. The term {ql/oo( ) >0} is a binary valued indicator function that has
the value one if ¢; /Oo( ) >0 is true and zero otherwise.

Another simple example of delay is in a telephone call where customers are hearing music
instead of a message that all circuits are busy. This can be modeled by a multiserver queue
with nonhomogeneous Poisson arrivals, an infinite capacity waiting space, and a first-come,
first-served (FCFS) customer service discipline. The number of servers maps C' to the number
of telephone call center agents. From a managerial perspective, a natural asymptotic analysis
is to scale up the average rate of arriving customers from A to n- A, where 1 > 1, and scale
the number of servers from C' to n- C. We are simultaneously scaling up the “supply” of
service resources and the “demand” of the customer arrival rate. Such a scaling, in the
language of call centers, is called resource pooling. It was first considered asymptotically
by Halfin and Whitt [13], and this type of scaling is defined to be in the quality efficiency
driven (QED) regime according to Zeltyn and Mandelbaum [47]. Dividing out this new
Markov process by this same scaling parameter 1 makes the resulting ratio converge to a
deterministic dynamical system {qg(/jfos (t)|t >0}, where
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with

d
274075 (1) = A1) — - min(gg755 (1), ©)

and qFCFS( )= Qg(/}gos( ). This new variant or QED version of uniform acceleration applies

toa large class of Markov processes that we call Markovian service networks. As was shown
in Mandelbaum et al. [33], all networks of this type have a strong law of large numbers limit
theorem when uniformly accelerated. Moreover, the limiting deterministic process is always
a dynamical system.

Finally, we revisit the single server with the PS service discipline. This time we add a
permanent job that interacts with all the other jobs being processed. We can use this process
to model the response time for a tagged customer entering the system at some specific time
and denote this service discipline by PS+. As shown in Hampshire and Massey [16], this
system also fits into the framework of being a Markovian service network. The result is
almost sure convergence, uniformly on compact intervals of time, or

. PS+ _
nlggoOggT Ql/oo( n) =) =0 as.

PS+

to the deterministic dynamical system {q, ;" (¢) |t >0}, which is uniquely characterized by

1/
its initial value and the ordinary differentia(ioequation
PS+
s = - =0
/= ETHIO)

2.5. Resource Demand Dynamics

A recurring theme in dynamic rate queues is that the time of the peak arrival rate is not the
time of the peak mean offered load. The timing of the latter always has a positive lag after
the timing of the former. A similar lag occurs for the times of the minimum arrival rate and
the minimal mean offered load. We can illustrate through an example this phenomena with
the dynamical system for the mean offered load.

We can visualize the time evolution of this mean offered load {g.(t)|t >0} by viewing
it as a one-dimensional dynamical system. In Figure 1, we make a phase-space plot of the
time derivative for g (t) versus its own time derivative for all time ¢ > 0. For constant A,
we have a continuous evolution of the dynamical system along the phase-space equation of
a line, according to the ordinary differential equation. This line has A as its y-intercept and
—p as its slope. When the time derivative of g (t) is positive, then the flow is toward the
right or is increasing over time along the z-axis, when the line for the dynamical system flow
is above the z-axis. Conversely, the system flow is from right to left when the flow line is
below the x-axis. The phase-space plot reveals that all solutions to the differential equation
(i.e., regardless of the initial value g (0)) converge to p=\/u as t goes to infinity.

When A is time dependent, then the time evolution of the mean offered load process is
no longer along a straight line. Moreover, the limit of g (t) as ¢ approaches infinity may no
longer converge to a unique point in phase space. Suppose that we let the arrival rate of A
be periodic, we can show that the limiting behavior of ¢ is also periodic over time. More
informally, if the period is a “day,” then we have “time of day” limits for what we call the
periodic steady-state distribution.

Now consider the following example from Horne et al. [23]. When we set A\(t) = a+a-sin(bt)
with b > 0, then the periodic steady-state behavior of the mean offered load phase-space
process moves in a clockwise elliptical orbit as shown in Figure 2. The center of this closed
curve is at (a/p,0). Moreover, the ellipse has both foci on the z-axis with extremal radii

equal to a/4/b? + p? and ab/+/b? + p2. If we draw a line of slope —u through any point on
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FIGURE 1. Phase-space plot of the mean offered load dynamical system with a constant arrival
rate.

S &

\\/9%\ dq

RIS OPY

v
-

(M, 0) (¢(0),0)
e (./' q

Ve
NS

the phase-space curve, then the y-intercept of the line gives the value of the arrival rate A
at the time of the phase-space point.

Now we show how our service resource demand model can help us manage a resource
provisioning problem for our service loss model. First, we define

Ci(e,p) =min{C|Bc(p) <€}

The integer value Ci(e,p) equals the smallest number of servers needed such that the
Erlang blocking formula is less than or equal to € for the given steady-state mean offered
load of p. The modified offered load approximation says that the scheduling policy of
{C(t)|0<t<T}, where

C(t) =Cile,¢oo(t))

is a good estimate of the smallest number of servers needed to keep the blocking probability
below € over the interval (0,7]. Hampshire et al. [20] develop this approach in the context
of bandwidth trading.

FIGURE 2. Phase-space plot of the mean offered load dynamical system with a sinusoidal arrival
rate.
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2.6. Fundamental Decision Problems

We now introduce specific types of decision problems for dynamic rate queues that are
motivated by more than just optimizing the performance of the queueing model. Suppose
that we want to develop a dynamic pricing policy {7 (t)|0 <t < T} for our service loss
model, where the traffic arrival rate is now a given function of time ¢t and the price 7 (t); i.e.,
A= A(t,m(t)). Our goal is to maximize the average revenue given the constraint that the
probability of blocking never exceeds some predetermined quality of service level e. Thus we
want to determine a policy that gives the maximum expected revenue value R(T), where

T
RT)= o [ w@)\7(0)- PLQcse(t) < CY .
In §9.1, we discuss how to use this calculus of variations machinery to find an approximate
optimal policy for this pricing problem. We do so by finding the optimal policy for an
associated dynamical system or fluid model.

Now consider a multiserver, service delay model where the revenue received from each
customer is r and the total wages (cost rate) for the C' servers equals w(C'). A natural goal
is to find a server staffing policy {C(t)|0 <t < T} that maximizes the average profit. We
now want to determine a policy that gives us some expected revenue value R(T'), where

T
RT)= s [ BRG] —uw(C)ar

In §9.2, we discuss how we can use the calculus of variations machinery to find an approx-
imate optimal policy for this provisioning problem. We do so by finding the exact optimal
policy for an associated dynamical system or fluid model.

Finally, consider a single server, two customer class, service delay model, with a weighted
PS discipline and a permanent customer. The revenue received from each class is r; per
customer for ¢ =1,2. A natural objective is to find the processing weights for each class
that maximizes the average profit. We now want to determine a policy that gives us some
expected revenue value R(T), where

T
R(T)= ma; r-BE WPs+ dt.
M=, e [ e ol o)
In §9.3, we discuss how to use this calculus of variations machinery to find an approximate
optimal policy for this prioritization problem. We do so by finding the exact optimal policy
for an associated dynamical system or fluid model.

3. Three Centuries of Dynamic Optimization

Classical mechanics was developed in the 18th and 19th centuries as an elegant mathematical
summary for the 17th-century physics of Newtonian mechanics. The work of Lagrange and
Hamilton forms the basis for these techniques. The mathematical techniques for dynamic
optimization evolved during the 20th century in the field of operations research. This effort
was led by Richard Bellman, who unified both the Lagrangian and Hamiltonian approaches
while developing a comprehensive framework for optimal control and decision analysis.
The 18th-century work of Lagrange describes the optimal dynamics or trajectories of
physical mechanical systems. Position and velocity are the fundamental quantities used to
describe the state of the system. The key notions of Lagrange’s approach, constructed as a
function of the position, velocity, and time, center around the concepts of the action integral
and its integrand, the Lagrangian. Despite the fact that action does not have a meaningful,
classical mechanical interpretation, Lagrange’s use of the quantity led to the same dynamics
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as Newtonian mechanics. Lagrange’s equations of motion are called the FEuler-Lagrange
equations (see Lanczos [30], Ewing [9]).

In the context of communications service management, action has the interpretation of
the optimal total profit or value obtained over a finite time interval. The Lagrangian, being
the integrand of the action integral, corresponds to the optimal profit rate.

In the 19th century, Hamilton reformulated many of Lagrange’s results. When describing
the state of the system, Hamilton continued to use position while replacing velocity by the
notion of momentum. Using position and momentum, Hamilton constructed a description
of the total energy of the system now known as the Hamiltonian. The coupled dynamical
system, the system’s optimal position and momentum variables, are known as Hamilton’s
equations.

If the Lagrangian of the system is not an explicit function of time, then it has a
Hamiltonian that is constant over time along the optimal path. This result is known as the
conservation of energy. In general, the Hamiltonian of a system is obtained by applying the
Legendre transform to the Lagrangian of the same system. If the Lagrangian of the system
is not an explicit function of position, then the momentum variable of the Hamiltonian is
constant over time. This result is known as the conservation of momentum.

Dynamical equations can be easily solved numerically if the initial conditions are given.
Unfortunately for Hamilton’s equations, we are given initial value of the position variable
at time zero but only the terminal value of the momentum variable at time T

For our communications service operational problems, Pontryagin’s principle (see
Pontryagin et al. [41], Kamien and Schwartz [26], or Sethi and Thompson [46]) is equiva-
lent to selecting a control that minimizes the Hamiltonian at every point in time if we are
maximizing the profit functional.

In the 20th century, Richard Bellman unified both the Lagrangian and Hamiltonian
approaches in the context of operations research while developing a comprehensive frame-
work for decision analysis. The fundamental object of analysis for sequential decision making
is the Bellman value function, or value function for short. This is the amount of profit
or value obtained over a time interval assuming that the optimal decision or control is
selected over that entire interval. The value function satisfies a recursive relationship known
as Bellman’s principle of optimality. This principle leads to a partial differential equation
for the value function known as Bellman’s equation (see Bellman [4]). All of the key results
of classical mechanics, Lagrangian and Hamiltonian, can be obtained within the Bellman
framework.

In the context of communications service management, the Bellman formulation yields
the tools necessary to interpret the physical notion of momentum as the opportunity cost
per customer. Furthermore, the Bellman formulation allows us to interpret the Hamiltonian
or physical notion of energy as the opportunity cost rate.

In the remainder of this tutorial, we derive the classical results of Lagrange, Hamilton,
and Bellman and apply them to the optimization of dynamic rate queues.

4. The Lagrangian

The development of dynamic optimization begins with the Lagrangian. We define it to
be a twice differentiable function £: R? x [0,7] — R. We then apply this function to a
differentiable path ¢: [0,7] — R as L(q(¢),¢(t),t), where

it = a0
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Problem 1 (Minimizing Arc Length). Find the differentiable paths that minimize
arc length over space-time, where

ﬁ(‘](t)v ‘j(t)»t) =V 1+ (j(t)z
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for the case of both endpoints at time 0 and T being fixed and the case of just the initial
point at time zero being fixed.
Solution. Using Euclidean geometry, we see that optimizing over differentiable paths
with ¢(0) =2 and ¢(T) =y yields
T?+(z—y)? =

/Wdt}

q: q(O =z, q(T) y[
where the optimizing path is

@) =a-(1=t/T) +y-t/T and G.(t)= "=
for all 0 <t <T. However, if only the initial endpoint ¢(0) =z is fixed, then we have

_ min [ / Wdt]

q:q9(0)=z

where the optimizing path is
g¢«(t)=2 and ¢.(t)=0
forall0<¢t<T. O

4.1. Euler-Lagrange Equations

Now we present the first fundamental result for the calculus of variations.

Theorem 1 (Euler-Lagrange Equations). Given an optimal path g.: [0,T] = R with
¢«(0) = x such that

/ " Ll i)(t)di = opt [ / 0 dt} ,

q:q(0)=z
then
d 8£ . oL .
with the transversality condition
oL
—(¢+,¢+)(T) =0. 2
94 (¢+,¢:)(T) 2

Proof. If ¢: [0,7] — R is differentiable with ¢(0) =0, then g, + ¢- ¢ for any constant e is
a differentiable path that starts at x. This means that

E(q*, Q*) “opt E(Q* +€9, Gy + €¢)

for all e. Since the optimum corresponds to the case of € =0, the total derivative, with
respect to €, of the integral of this Lagrangian over the interval [0,7] must be zero when
e = 0. Using integration by parts and the fact that ¢(0) =0 yields

d
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oL oL, . .
— /0 (3(] (Q*a Q*)(t) . ¢(t) + 8—q(q*,q*)(t) . (b(t)) dt

oL Troc doc
= — (¢4, ¢:)(T) - (T _—— = ) (t) - &(t) dt.
o d)(D)-0(0)+ [ (5= 450 o) ot
If we first assume that ¢(7") = 0, then the remaining integrand can only be zero if the
Euler-Lagrange equations are satisfied. We then return to the case of ¢(T') # 0 to obtain the
transversality condition. [
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Example 1 (Newtonian Mechanics). Define the Lagrangian of a particle to be

where V(q) is the potential energy of a particle and the first term is the kinetic energy.
The Euler-Lagrange equations for this Lagrangian are

(mQ) = _Vl(q)»

with the transversal condition of m(T') - ¢(T') = 0. When the mass m is constant, then this
equation reduces to the Newtonian law of “force equals mass times acceleration,” where this
(conservative) force is the derivative (gradient) of a potential.

4.2. Terminal Values and Sensitivity Analysis

Corollary 1 (Lagrangian with a Terminal Value Function). Now we are also
given a terminal value function I: R — R? that is differentiable. If we have an optimal path
g«: [0,T] =R, where

T T
/ £(q0.4) () di+1q)(T) = opt [/ £(q.6)(t) dt +1(q.)(T)|,
0 q:q(0)=z LJO

then g, solves the same FEuler-Lagrange equations as given by Equation (1). However, the
transversality condition is now

oL ol

3—q(q*,q'*)(T) + a—q(q*)(T) =0. 3)

Proof. Using the total time derivative, we can rewrite the terminal value as

T
la)(T) = a)0) + [ Gy i
T
10O+ [ F@®-i0)+ F @O

This means that we can transform our optimization problem into one without a terminal
value function, where the Lagrangian £ is now

A0 . ol . ol
L(q,4)(t) = L(g,§)(t) + 5~ () (t) - 4(t) + = () (2).
dq ot
Finally, we observe that L generates the same Euler-Lagrange equations as £ but yields

different transversality conditions. [

Corollary 2 (Sensitivity Analysis). If ¢.: [0,7] — R is an optimal path, where
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/ " Ll i)(tydi= ot [ / ' ﬁ(m)(t)dt}

q:q(0)=z
then for any time-constant parameter a, we have

d [T . or, . dq Tar ,
da ), E(q*,q*)(t)dt——8—q(q*,q*)(0)-@(OH | %(q*,q*)(t)dt-
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Proof. Using Theorem 1 yields

i [ i

., .
:/0 (%@*,q*)(t)-%(tng—g(q*,q*)(t)-%(mg—ﬁ(m*)(t)) d

= i) 1) - 20,3)0) 0+ [ iy

0
TroL doc . dq
+/o (Fq—aaqu*a%)(t) da(t)dt

Toc

- [ Geama o

5. Constrained Lagrangian Dynamics

5.1. Multipliers and Slack Variables

We can model the optimization of a Lagrangian subjected to equality constraints as follows.
Theorem 2 (Equality Constraints). If ®: R? — R is a differentiable function, then

qz&%t:x [/oTﬁ(q’Q)(t) dt} a ;)%t z|:/ L(g,¢) () +7(t) - (g, 9)(t) dt]'
®(q,4)=0

Moreover, the optimizing paths q.: [0,T] = R and r.: [0,T] — R satisfy the Euler-Lagrange
equations

p (g,c (s @) + 7 - g—?(q*,d*)> ()= (g_s(q*’q*) e g_(j(q*’q*)> )

with the equality constraint
D(gx, ¢+ ) (1) =0
and the transversality condition
oL 0P
-~y *7.* * " TA L *7.* T)=0.
(55 )+ e i) ) 1) =0

Proof. Define the Lagrangian £, where

L(q,4,7) = L(q,4) + 7 D(q,q),
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and we are done. [J
‘We now model the optimization of a Lagrangian subjected to inequality constraints.

Theorem 3 (Inequality Constraints). If ¥: R? — R is a differentiable mapping, then
T T

ovt | [* @i = o [ [ @i+ (@0 - a0?) .
0 0

q:q(t)=z q:q(t)=z
¥(q,4)>0
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Moreover, the optimizing paths q.: [0,T] = R and r.: [0,T] = R satisfy the Euler-Lagrange
equations

oL . ov . oL . ov .
dt<6 (@ur G) + 75 3(j (Q*’Q*)>(t)_ <a_q(Q*aQ*)+r*'a_q(Q*7Q*)> (t), (4)
with the inequality constraint

<I>(q*vq*)( ) _J*(t)2 Z 07

the transversality condition

(S i+ Gt )@ =
and the complementarity condition
r«(t) - o (t) =0.
Proof. Define the Lagrangian L, where
L(q.4,r,0) = L(g,q) +7- (¥(q,4) — 0°).
The Euler-Lagrange equations due to ¢ give us

d oL oL

dt 94 (Q*7Q*7T*70*) = a_%(Q*vQ*ar*aa*)~

This simplifies to (4).
The Euler-Lagrange equations due to r give us

oL, . .
5(‘1*7(]*,7'*70'*):0 = U(qu,q) =02

Finally, the Euler-Lagrange equations due to o give us

%(q*,q*,T*,U*) =0 <= r.- 0. :0,

and we are done. [

5.2. Isoperimetric Constraints and Duality
Finally, we model the optimization of a Lagrangian subjected to isoperimetric constraints.

Theorem 4 (Isoperimetric Constraints). If ©: R? = R is a differentiable mapping,
then

o~
&, |
.
o °
c wn
5 &
DL
T o
L
o S
=
©
2
=
@2
23
Sp
O
o <
=
@ ©
n 2
i
]
58
O ®©
o2
£y
32
>
DQ—
Ec
0.2
S 3
52
e E
T O
02
o2
T ©
T
12
0 £
c .2
e
o
2c
- O
£ 3
o) O
= 2
a -
c
O o
°8
8 e
S =
o O
<E
w_
©
= C
e o
=
035
z-c
=<

q::?(%t=x [/:g(%‘ﬁ(ﬁdt] = . ;)(It))t ) [/ L(q,4)(t) +a(t) - (b(t) —O(q, ) (t ))dt]
Jo ©(a,d)(t) dt=0 b: b(0)=b(T

This optimization problem simplifies to

opt chq dt} q;)(It))t_J/OT(E—a-@)(q,q)(t)dt].

S ©(q,9)(t) dt=0
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Moreover, the optimal path q.: [0,T] = R satisfies the Euler-Lagrange equations

d (0L 00 . (oL 00 .
@<8_q_a'6_q>(q*’q*)(t)_ <8_q_a'8_q)(q*’q*)(t)’ (5)
with the transversality condition of
oL 00
= a2 ) (g g (1) =0,
(5 o 57 ) @i m=o )

and a is a constant that satisfies the isoperimetric condition of

T
| etaiywai=o ")
0
Proof. Define the Lagrangian L, where

L(a,b,q,4) = L(g,4) +a- (b—0O(q,9)),

where we add the boundary conditions of b(0) =b(T") =0.
The Euler-Lagrange equations due to ¢ give us

doL, . oL, .
. A *ab*v *y I+) = 75— *,b*, * Jx)-
dtaq(“ Gure) = 5 (s beg G«)
This simplifies to (5). The transversality condition of (6) is similarly derived.
The Euler-Lagrange equations due to a give us
oL, . : ; .
%(a*,bMQ*yCI*) - 0 <l:> b* - @(q*7q*)
Integrating the latter equation over the interval (0,7, combined with the conditions of
b(0) =b(T) =0, gives us (7).
Finally, the Euler-Lagrange equations due to b give us

%%(a*,b*,q*,q*) =0 < a,=0.
This makes a, a constant over time, and we are done. [

Problem 2 (Maximizing Area Constrained by Perimeter). As illustrated in Fig-
ure 3, find the maximal area |(2|, for a simply connected region €2 in R?, bounded by a fixed
perimeter |092| of the boundary 9.

Solution. Let (z,y): (0,7] — 092 be a one-to-one differentiable mapping and (z,y):
[0,T] — 09 a differentiable mapping. Moreover, we assume that x(0) = z(T), z'(0+) =
x'(T—), and y has the same properties.

We can compute the perimeter of 92 by using this parameterization of the boundary
for 2 and get
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T
109 :/0 NCOESTOR (8)

We can also use the parameterization of the boundary curve 92 to express the area of 2 as
a line intergral. This yields

T
=1 / (x(t) 9(t) — (1) (1)) dr,
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FI1GURE 3. Finding the maximum area given a fixed perimeter for the boundary.

T
|60 = jo X2 + () dr

(x(2), ¥(0)) ‘\

(x(0), y(0)) = (x(T), ¥(T))
since by Green’s theorem we have

|Q|:// d:c/\dy:%/ xdy —ydx.
Q a0

Now we have an optimization problem with an isoperimetric constraint. Our Lagrangian is

E(a,b,x,x,y,y):%(acy—yx)—i—a(b—v $2+y2)

The Euler-Lagrange equations for x are

doL oL d 1 a-@(t) 1.
dt 0 Oz — dt( 2y(t) (1) +y'(t)2> ) y(t). )
Similarly for y we have
doL oL d {1 a-y(t) 1
E@ = = T (2 x(t) ) +y(t)2> =3 x(t). (10)
For the state variable b, we have
doL oL
3ol = o 0 < a(t)=0

for all 0 <t <T. This means that a is a constant. Finally, for its dual variable b we have

d oL oL .
T e—— T e— —_ Y 2 ] 2.
0 95" Ba = b(t)=Vz(t)2+y(t)

Coupled with the initial and terminal conditions of b(0) =0 and b(T) = |0€|, we then
have (8).
Simplifying (9) and (10) yields

d _L'(t) =0 an i ki _L@ -
E( /o :b(t)2+y(t)2> b dt<(t) i‘(t)2+y'(t)2> '

This means that there exists two constants £ and 7 such that
Ca(t e
__a#l)  d sy —e= 29O
L(t)* +y(t)? Vi(t)? +5(t)?
From this it follows that x(t) and y(t) solve the algebraic equation
(x(t) = &) + (y(t) —m)* = a®.

This means that € is a circle of radius a. The last step is to select a such that |02 =27ra. O
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We can apply these same arguments to solve a dual problem.

Problem 3 (Minimizing Perimeter Constrained by Area). Find the minimal per-
imeter |09)], for the boundary 9 of a simply connected region € in R?, given a fixed
area [Q)].

Suppose that we start with a given area value. Solving Problem 3 yields the minimal
perimeter for this area. Conversely, if we assume this minimizing perimeter value, then the
maximal area from the solution to Problem 2 is precisely the originally given area value.
This is the continuous state version of the duality principle for linear programming. Here,
the concepts of area and perimeter implicitly give us quantities that are always positive.

Below, we give a more generalized notion of this duality.

Theorem 5. Suppose that we have Lagrangians L and M such that:

(1) For all constants x, there exists an optimal path {¢Z(t)|t >0} such that

f<x>z/0 (£ -z M) *><t>dt=max/0 (€ —x- M)(q)(t) dt.

a
(2) The function f is conver with f(0) >0, f(0) <0, and

mlnf( )=0.

x>0

It follows that

T
/ L(g,¢ min / M(q,4)(t)dt=0
q: fo M(q’Q)(t dt 0 foT E(q"j)(t) dt=0J0

and

min(max/OT(ﬁ—x-M)(q,Q)(t) dt) =max<min/0T(/\/l — 2 L)(q,d)(®) dt> _

x>0 q z>0 q

Proof. Given the sensitivity results, we have

— / M(g?,d2) () dt = 0.

The conditions of f(0) >0 and f/(0) <0 translate into

/ L(q°, ¢ dt—max/ L(g,¢)(t)dt >0

and -
/ M(2,d%)(t) dt > 0.
0

Starting from zero, f is a decreasing function as long as f/(z) > 0. Since there exists an
x. >0 with f(z,) =0, we then have f'(x,) =0 and so
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T
max [ 2q.d) (0= min f(o) -

@ [ M(q,d)(t) dt=0

Now {gZ(t) |t >0} solves the Euler-Lagrange equations for £ — x - M. Since

Mm-L. E——— (L—z-M),

T

it follows that {¢¥(t)|t >0} also solves the Euler-Lagrange equations for M —1/x, - L
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Now we define the function g(z), where
T
o) = min [ (£~ M)(g.d)(0) .
0

Based on our assumptions, there exists an x, such that f(x.) = f'(z.) =0. For all positive x,

we then have )
o) =-a-£(3).

Through various operations such as differentiating and multiplying by x, we obtain

g'(z)= —f(é) - i f(é) and g"(z)= _f@)

It now follows that ¢ is a negative, concave function with g(1/z.) = ¢’(1/z.) = 0; hence
g attains its maximum at 1 / T, and

9(1/z.) =maxg(z)=0. O

5.3. Conserved Quantities

We conclude this section by showing how to construct quantities that are conserved along the
optimal Lagrangian path. The following result is adapted from Sato and Ramachandran [44].

Theorem 6. Let 0 parameterize a differentiable transformation from (q(t), t) to
(qo(ty),ty), where

%(te) = C|g((](t), Q(t)7t) and tg=tg (Q(t)’ Q(t)a t))

with q(t) = qo(to) and t =to. If we have

; (11)
=0

G900 = 25 (Lt dott).t0)- o )|

then the deterministic process
oL, .. .. . . oL R
G(q) - 8—q(q,Q)'q(q,Q) - (ﬁ(q,q) 2 —=(2,9) ) t(q,9)

s a conserved quantity along the optimal path, where

and  t(q,9) = —to(q,q)

d
9—0 do

N, . d .
q(q,4) = deqe(q,q) -

Proof. Observe that

in(t0) = Goau(a(0).0).0) | G10(0(01.000).0) = 0lal).0(0).0) /(a0 )0,
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This means that we can rewrite (11) as

6(0) = 5000  fo(0:0).t(a.0) - bfa. oo

Along the optimal path, the Euler-Lagrange equations hold, so we have

e (0,00, = 5 (@.0,2.(0,0)
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The rest follows from the computation below:

%([’(qe(q*aq*)aq@(Q*aq*)/ta(q*aQ*)ﬂte(q*a@k)) : t@(‘]*aq*)) |9:0

oL A . oL ) i .4 .
—a—q(q*,q*)~q(q*,q*)+a—q.(q*,q*) (A(s d) — G Hgur )

L . . N .
(Q*aQ*) t(Q*aQ*) +E(CI*7Q*) 't(Q*7Q*)

at

oL . oL ) .4 )
dt(aq (%7‘1*)) (s, 4+) + ( wx) 4 (Q*a(J*)_a_q-(Q*aQ*)'Q*'t(Q*aQ*)

d X .

+o <E(q*,q*) (G Gs) - ) (@ur @) + L(qwr G) - H(q, G)

25@—5(%4*)) (g« q«) + (q*,q*) G(qs, Gs)

d oL N . . oL AT .
+ 2 (i - G ~q*) )+ (L0t = G 0080 ) g

dt(gﬁ(q*,q*) ﬁl(q*,q'*)+(L(q*,q'*)_g_g(q*7q-*).q-*).{(q*qu). 0

6. The Hamiltonian

From the perspective of classical mechanics, the Lagrangian through the Euler-Lagrange
equations successfully captured the laws of Newtonian physics. However, quantities like it
and its time integral called “action” had no physical interpretation. They were merely math-
ematical formalisms that worked. One could attribute this to the fact that philosophically
classical physics was not thought of in terms of quantities that are optimized. This is in
contrast to the operations research and economic views of the Lagrangian. Here, we can
interpret the Lagrangian as a “value rate” since operations researchers and economists nat-
urally maximize quantities like “profit” or “revenue” and minimize quantities like “loss” or
“cost.”
We formally define the Hamiltonian in terms of the Lagrangian to be

H(;mq,t)Eﬁ(ﬁ-v—ﬁ(q,vvt» (12)

The optimization method that yields the Hamiltonian is called the Legendre transform.
In the next section we study its special properties. Instead of using the optimal paths
and velocities of ¢, and ¢., we keep the former but replace the latter with a generalized
momentum variable p,. This allows us to replace the Euler-Lagrange equations for position
and velocity with the equivalent set of Hamilton’s equations for position and momentum.
Unlike the Euler-Lagrange equations, Hamilton’s equations are always dynamical systems.
These are evolution equations that lend themselves to computationally simple numerical
solutions. Finally, the Hamiltonian perspective helps us identify conserved quantities. In
addition to terms like energy and momentum, there may be other conservation principles
at work for a given Hamiltonian system.
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6.1. Legendre Transforms

First, for some function I: R — R, we define the Legendre transform (when it exists) to be
the function h: R — R, such that

h(p) Eggﬂg(p-v —1(v)).
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FIGURE 4. The Legendre transform for the case of opt = max.

\ == ((p),Lovs(p)) = (W(p),lo k' (p))

- 0, -h(p))

For the case of opt being max, an economic interpretation follows by defining I(v) to be
the cost of producing the volume (or total number of items sold) of v items. Now let p be
the price of each item sold. The Legendre transform h(p) is optimal profit that is obtained
with the optimal volume of items produced, if we assume that every produced item is sold.
Moreover, this optimal volume equals h’(p). This is the instantaneous rate of change in
profit with respect to a unit change in the price.

In Figure 4, we can also give a geometric interpretation of the Legendre transformation
when opt is max. For a given slope p, we want to find the “smallest” line of that slope to
intersect with the graph of I. The negative of the y-intercept of that minimal line equals h(p).

For the case of Newtonian mechanics as given in Example 1, the integral of the Lagrangian
is something that is minimized. Thus, opt = min, opt = max, and the corresponding
Hamiltonian is

H(pq)(t) = max(p-v—L(gv,1))
_ _ 1 2
—Iglea]ﬁ((p v—smv* +V(q))
_ 1,2
= max(p-v— 3mv*) +V(q)
P’ m 2%
= %(% 7(”‘ —> ) Vi)
2
_ P
=5 V()
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Moreover, the maximum value for the Hamiltonian is achieved when p = muw, since m > 0.

6.2. Hamilton’s Equations

We begin this section by continuing our discussion of Example 1. If we have L£(q.,¢.)(t) =
Ds G — H(px, qx) (1), then

. oL .
D =M Qs = %(Q*a%k)(t);
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hence

OH CPs . 8_7-[ i .
ap(p*,q*)(t)—m—q* and 94 (Ps, ) (1) = V' (qi) = =D

Finally, observe that if the mass m is constant, then
L)) =2 p V(@) e = o~ e =0
dt k9 Yk m * * * * * * * .

Thus along the optimum path, H(p«, ¢.)(t) is a constant over time.
We now summarize these results in a larger framework.

Theorem 7 (Hamilton’s Equations). If we have

H(Pay @) (8) = P () - 4 (t) = L(q, ¢ (1), (13)
then
oL
(1) = = (qx, G« )(1). 14
p«(t) aq(q G« )(t) (14)
Moreover, we have
OH OH
'* = 5 Px,{4x .* = 5 Px,{4x . 1
P« (1) 94 P+, ) () and  u(t) o (es a4) (1) (15)
Proof. Our definition of the Hamiltonian means that we have some v, (p, g, t) such that
H(p7q7t) :pU*(p7Q7t)_‘C(q7v*(p7qat)7t) (16)
Now we make the substitutions
p=p:(t), q=¢«(t), and v.(ps,q:)(t) = Gu(t). (17)
The Equation (14) follows from (13), since
9 N oL
O_% (p~v—£(q,v,t)) lmphes that p_a_q(qvv*(p7Q7t)7t)' u

'U*(p7Q7t)

The computation of the partial derivatives of the Hamiltonian with respect to p and ¢ in
(16) simplifies considerably due to the envelope lemma (see Lemma 1). This result allows
us to ignore the dependence of v(p,q) on p and ¢ and state that

OH OH oL
a_p(p7Q7t)_U*(p7q7t) and a_q(p7Q7t)__a_q(Q7v*(p7Q7t)7t)

Now Hamilton’s equations (15) follow from applying the substitutions of (17), (14), and the
Euler-Lagrange equations (1). O

6.3. Computing Hamiltonian Flows

Given a Lagrangian £ and an optimal position coordinate g, yields a Hamiltonian H and
what we define to be an optimal momentum coordinate p, given by (14). The coordinate
pair of p, and g, describes a point in phase space. The evolution of these coordinates over
time {(p«(t),q«(t)) |0 <t <T} is called a Hamiltonian flow. We now state an algorithm for
computing this flow (see Figure 5). Initially, we assume that

qo(t) = q(0)

for all 0 <t <T. Now we iterate through time loops that start at time T, go back to the
past of time 0, and then go back to the future of time 7. Recursively, the nth time loop,
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FIGURE 5. A flow chart diagram for computing Hamilton’s equations.

n=1

Set go(t) = g(0)

forall0<¢t<T
l P = P+
—>( n < iteration number? >_'
l qn = g+

Solve 0 =t<T

. 0H
Pu(t) == o0 (P,(),q,_1(2),)
q

with p,(T) =0

l

Solve 0 =t=T

G, (t) =~ LE (2, (1), q, (1), )
dp

with ¢,,(0) = ¢(0)

where n > 1, is

(1) Given {gn,—1(t)|0<t<T}, solve for the dynamical system
. OH
Pn(t) = _a_q(pna Gn—1)(t)
backward in time for 0 <¢ < T, starting with the terminal condition p, (T") = 0.
(2) Given {p,(t)|0<t<T}, solve for the dynamical system
. OH
qn(t) = 8_}9 (P> qn)(2)

forward in time for 0 <¢ <T, starting with the initial condition g, (0) = ¢(0).

6.4. Poisson Brackets and Conservation Principles

Corollary 3 (Conservation of Momentum). Along the Hamiltonian flow, we have

oL : . OH B
8—q(p*,q*)(t)—0 if and only if 8—q(p*,q*)(t)—0~

Moreover, both statements are equivalent to p.(t) =0.
Proof. Using the Euler-Lagrange equations (1) and Hamilton’s equations (15) yields
oL oH
'*t:_ *7*t:__ *7*t~|:|
De(t) = 5y (P @) (8) = =5 2 (Pe, 02) (1)

Corollary 4 (Conservation of Energy). Along the Hamiltonian flow, whenever we
have
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OH

it follows that

LA (p.,0)1) =0
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Proof. Using Theorem 7 yields

d OH OH OH
N *7*t:_ *7*t*t _*)*t*t _*a*t
g P a)() 8p(p q:)(t) p()+aq(p ¢)(t) - 4 (t) + 7~ (Pe, 4 ) (2)
= Gu(t) - P (t) = Pu(t) - 4 (1)
=0 0O
These two results are a part of a larger conservation principle. We define an observable for

the Hamiltonian flow to be any differentiable mapping ®: R? x [0,7] — R. Now we describe
the dynamics of ®(py, q.).

Corollary 5 (Poisson Brackets). Given a Hamiltonian H, let p, and q. be optimal
paths that solve Hamilton’s equations (15). If ® is an observable, then

000 = (0.0 + 50 ) r0 )0,

where {-,-} is the Poisson bracket that is defined by the formula

{(I)’\II}(pa(Iat)E <8_q¢9_p_8_q8_p (18)

where W is another observable.

Proof. Applying the chain rule for the total differential with respect to t yields
d 0P 0P 0P
—¢ *7*t:_ *,*t*t —*,*t*t _*,*t
7 2P a)() 8p(p q)()p()+3q(p ¢:)(8) - 4+ (t) + 5 (Pe, 0:) (1)
— _(9_(1).(9_7-[4_8_@.6_7{_’_6_(1) ( )(t)
“\"9p ag "oq ap ot )P

Now we apply (18) to (19), and we are done. [
The Poisson bracket also has various algebraic properties. First, it is antisymmetric; i.e.,
for all observables ® and ¥, we have

{0, U} =—{T,d}.
Moreover, it is also a bilinear operation, with
{2+, H}={D,H}+{¥,H}
and
{a-®,H}=a -{P,H}
Finally, the Poisson bracket satisfies the Jacobi identity or

e,V Hy = {2, {0, #H}} - {V,{®,H}}.

The Poisson bracket has the following geometric interpretation for two observables that
are not time dependent or ® and ¥ where

od oV

ot ot
In Figure 6, we fix t and view ® and VU as scalar fields over the “phase space” given by the
momentum and position coordinates of p and ¢, respectively. The dotted curve represents a

contour for ® or the set of phase-space coordinates where it equals some constant a. The solid
curve plays a similar role as the contour for ¥ equalling a constant b. The gradient of ® is
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FIGURE 6. A geometric interpretation of the Poisson bracket.

V¥(p.q)

P=a {®,¥}(p,q)

..............
.o .
....
*e

V@(p,q)

ot
o
.t
.
.t
.
.
ot
o

the direction of greatest change for its scalar field. It is always orthogonal to the tangent line
for the contour curve at that point (p, ). Locally, this means that the gradient is orthogonal
to the direction that “conserves ®.” The gradient for ¥ has a similar interpretation. The
Poisson bracket is then the area (up to a sign for orientation) of the parallelogram formed
by the two gradients at a given point (p, ) in phase space. This area is zero if and only if the
two gradients are colinear or they “point in the same direction” (up to a sign). When the
Poisson bracket is zero along the contour of one of them, then the same curve is a contour
for the other and it is possible to move through phase space in a direction that conserves
both observables ® and W. For more on the algebraic structure of Hamiltonian dynamics,
see Marsden and Ratiu [34].
We define an observable ® to be a conserved quantity over the interval [0, 7] if

%‘P(p*,q*)(t) =0.

Now we can characterize the underlying structure of conserved quantities.
Corollary 6. An observable ® is a conserved quantity over the interval [0,T] whenever

(%—?L{@,H})(p*,q*)(t):o

for all 0 <t <T. Moreover, the set of conserved quantities form a vector space that is also
closed with respect to the Poisson bracket operation.

Proof. Given two conserved quantities ® and ¥, we have

0 0P ov
a{q’,\ll} = {E’\II} + {@, E}
o, M} v} {2, {V, H}}
{2, H}} —{®,{¥, H}}
= {{v, ¢}, H}
= —{{®, ¥}, 1}
The third step follows from the Jacobi identity. O
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We have now shown that the family of conserved quantities form a Lie algebra with
respect to addition and the Poisson bracket operation as our anticommutative, nonasso-
ciative multiplication. If we are given two or more conserved quantities, we can then use
linear combinations of them and the Poisson bracket to generate the associated Lie algebra
of additional conserved quantities.

For operations research problems, the Hamiltonian formulation is useful from a computa-
tional perspective. It is easier to numerically solve differential equations that are dynamical
systems than some of the Euler-Lagrange equations derived from Lagrangian mechanics.
This simplicity is somewhat compromised by the mixed boundary values of an initial value
for ¢ paired with a terminal value of p(T) = 0. However, the dynamical system structure
suggests an iterative method for the solution. The nature of the method suggests evolving
forwards in time with ¢ but backward in time with p. The Hamiltonian formulation also
provides us with a Lie algebra calculus to derive conserved quantities.

6.5. Envelope Lemma
We conclude this section with a precise statement and proof of the envelope lemma.

Lemma 1 (Envelope Lemma). Let O CR? be open and f: O — R be differentiable. If
for all x, there exists some ¢(x) such that

flz,9(x))=opt f(x,y), (19)

—oco<y<o0
then

d of

Proof. Since f is differentiable, then by (19) we have

The rest follows by taking the total derivative of f(x,¢(x)) with respect to x and using the
chain rule. O

7. The Bellman Value Function

The Bellman value function can be defined in terms of the Lagrangian as follows:

V(z,t)= opt [/ L(q,q)(s ]
q:q(t)=z

We show in this section how the Bellman value function yields a unifying framework for
interpreting Lagrangians and Hamiltonians from an operations research perspective.

o~
&, |
.

o
23
=

5 E
T o
L
o c
=
©
2
=
@2
23
= 2
O +
o <
=
@ ©
n 2
i
b
58
O ®©
2
£y
32
=
QQ-
= C
® 9
S 3
o2
2 E
T O
o2
o2
T ©
T
12
0 £
c .2
e

o
2c
— O
£ 3

o) O
= £
a -
c
(]
8 e
S =
o O
<E
w_

[
= C
e o

=
Q35
z-c
=<

7.1. Bellman Principle of Optimality

Rather than derive the Euler-Lagrange equations, we can find the optimal path by using the
equivalent fundamental principle of optimality due to Bellman (see Pedregal [40]), where

V(@.)(t)= opt [/ L(a.d)(s)ds + V(a)(r)|, (20)

q:q(t)=x

for all intermediate times 7 where t <7 <T.
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FI1GURE 7. Bellman principle of optimality.

Problem 4 (Shortest Path Around an Obstacle). Consider two points in the
Euclidean plane. They are denoted by A and D, as illustrated in Figure 7. The shortest path
between them that is constrained to stay outside the disk is given by the unions of the lines
AB and CD with is shortest of the circular arcs BC.

Solution. A simple way to show that this is the minimum path is by applying the
Bellman principle. The subset of the path that connects C and D must be a straight line
since that is the shortest distance in general and it is a line segment that is outside the
disk. A similar argument can be made for why the subset of the path that connects A and
B is also a straight line. Finally, we observe that a circle is defined to have the maximum
area for a given perimeter. This means that the smaller of the two circular arcs connecting
B and C is the minimum distance between the two points when the path is constrained to
stay outside the disk. [

7.2. Hamilton-Jacobi-Bellman Equation

The Bellman value function is defined in terms of the Lagrangian. In this section, we
show how along the optimal path we can use the Bellman value function to construct the
Hamiltonian.

Theorem 8 (Hamilton-Jacobi-Bellman Equation). If the Bellman value function is
twice differentiable, then we have

%(w,t)z%(—z—z(x,t),x,t) (21)
Moreover,
P =500 and Hipe,a.)(0)= G (0.)(0). (22)

Proof. Using the Bellman principle of optimality (20), subtracting V(z,t), dividing by
T —t, and taking the limit as 7 approaches ¢ yields

0= opt [ / " L(gd)(s) ds +V(a)(7) — V(a)(t)

q:q(t)==
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Y P V(g)(7) —V(Q)(t)]
= O t — E 5 S d3+
A ey (¢:4)(s) p—
- . d
— ot |eio+ V)
g q(t)=z L
oV oV
= opt |L(q,9)(t)+ —(q)(®)-(t) + — t]
| (¢,9)(t) 94 (@)(®)-4(t) + 5 () ()
oV aV
= Sgﬂg [ﬁ(x,v,t) + a_q(xat) s E(xat)]
1% %
= Sgg [,C(x,v,t) + a—q(z,t) .v] + E(aj,t).

So finally, we have

G @00 =—ont | Lo+ G0 0] =T | =G w000 Lot
which yields (21). Finally, (22) follows from using the Bellman principle of optimality. For
every intermediate time 7, where 0 <7 < T, we have an equivalent optimization problem
where the Bellman value function is now the additional terminal value function at the new
terminal time 7. Using (3) from Corollary 1 yields, on the left-hand side, the formula for the
generalized momentum variable p,(t). From this follows the right-hand side formula of (3)
for the Hamiltonian. [

For operations research problems, the Bellman value function formulation is useful from
a perspective of interpreting optimality. The partial derivatives have the interpretation of
opportunity costs. The Hamilton-Jacobi-Bellman equation says that the generalized momen-
tum variable is the opportunity cost density and the Hamiltonian is the opportunity cost
rate.

8. Optimal Control

In this section we show how all three methods of dynamic optimizations, the Lagrangian,
Hamiltonian, and Bellman value function, all contribute to solving problems in optimal
control.
o~ T A~
V(z,t) = opt [/ L(q,7)(s) ds] ,
q:q(t)=z,reK t
q:[(q(t)vr(t)at)

where K is some compact subset of R. Moreover, £: R x K x [0,T] — R is differentiable
in the first and last arguments but optimally semi-continuous (i.e., upper semi-continuous
when opt is max and lower semi-continuous otherwise) with respect to the middle argument.
We define I: R x K x [0,7] — R in a similar manner except that we assume that it is a
continuous function of the middle argument.

Since this optimization problem only involves the state variable r and not its time deriva-
tive, we refer to r as a control variable. We want to extend our methods for dynamic
optimization to cover the cases where the control variable range is confined to a compact set
and the Lagrangian may not be a differentiable function in the control variable argument.
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8.1. Pontryagin Principle

Suppose that we are given the control variable . Our problem is then one of constrained
optimization. The Lagrangian £ for this problem is

‘C(pa q,q,'f',t) :ﬁ(qa T, t) +p- (q - Z(q,T,t)).
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Since this Lagrangian is a linear function of ¢, its Legendre transform is well defined exactly
at p, which yields . R
H(pa q,T, t) =D l(qa r, t) - ‘C(Qa T, t)

In this section we show that ﬁ(m,t) is a Bellman value function by deriving its
Hamiltonian. We achieve this by constructing the position and momentum variables that
solve Hamilton’s equations.

Theorem 9 (Pontryagin Principle). For this optimal control problem, we have

H(Z’*yQ*yr*)(t) :;?ETIE' H(p*(t>7q*(t)7pv t),

where

m(t):_%_’;(p*,q*,r*)(t) and q*<t>=%—;‘<p*,q*,m<t>

for all 0 <t <T with p.(T) =0, and ¢.(0) is given.

Proof. Given a optimal path ¢.: [0,7] — R and an optimal control r.: [0,T] — K, we
need only show that

Since we have

it follows that
)0 = =5 0)0)-Uge )0 Llgrr)(0)

Equating this with (23) of Lemma 2, when x = ¢.(t), yields

_8_q(q*)(t) : [(q*,r*>(t) _ﬁ(q*vr*)(t) :g[_g_]q)(q*)(t) 'Z(q*(t),p, t) - ‘é(Q*(t)7pa t):| .

Finally, we use (25) with o = q.(¢), p«(x,t) =7.(t) and the chain rule to show that

d( oV oy ol oL
G (-500) = (-5 @O GO~ Golar)®)- O
Lemma 2. We have for all x and t
oV —( oV
E(Iat)_;)ep};%(_a_q(mvt)’x’pat>a (23)

where there exists some p.(z,t) € K such that
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oV oV
a(xat)_H<_a_q($7t))x7p*(x7t)vt) (24)
and
92V o2V _OH ([ 9V

9104 (z,t) + a—qQ(x,t) A, pu(x,t),t) = N <—a—q(x,t),x7p*(x7t),t>. (25)
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Proof. Using a similar argument to the one we use for the Bellman value function, we
have

0= opt [[Tﬁ<q,r><s>ds+9<q><f>—9<q><t>}

q:q(t)==

G= l(q7 ) .
o [ [ tar ds+wq><7>_v<q><t>]

q:q(t)=x T—1 T—1

G=I(q,7)(t) J
- ot [lan+ 5Pa0]
q:q(t)=z,reK L
i=i(a. 1) (1) ~
= ot |Ean+ Zw-an+ Zw <t>]
q:q(t)=z,reK L ’ 0q ot
G=I(q,7)(t) )
= ot Ean) 0+ G0 + 5 0]
q:q(t)=z,7reK L
d=l(g,7)(t)

o~

opt [ﬁ(w,p,tﬂ- ?;( t)-1(zx, p,t) + %—];(x,t)]

PEK ~ ~
. oy A A%
—gglg[ax,p,m ) o, >] + 2w,

Since opt(—z, —y) = —opt(z,y), we then have

oy S 1Y) . R
O 0=t S @) l(aup.t) - £oput)].

An optimum semi-continuous function always attains its optimum on a compact set. Hence,
there exists a p.(z,t) such that

v v . A

—(x,t) = ———(z,t) - l(z, ps (2, 1), t) — L(x, ps(x,1),1).

7 (0=~ (@0 1@, pu(a.0).6) = £(z. pu (1)1

Applying a weak version of the envelope lemma, see Lemma 3, we can then take the partial
with respect to x in the ¢ entry and obtain (25). O

8.2. Weak Envelope Lemma
Now we state and prove the weak envelope lemma.
Lemma 3 (Weak Envelope Lemma). Let f: O x K — R be differentiable in the first

variable and optimally semi-continuous in the second where O and K are, respectively, open
and compact subsets of R. If there exists some mapping ¢: R — K such that

f(z,9(x)) = opt f(z,y),
yeK
then
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%f(x,d)(w)) 0 for all x € O implies that 8f( ,6(x)) =0 for all such z.

Proof. For all z and y, we have

[, 6(2)) = f(y,6(y)) Zopt £y, ¢(2))-

This means that f(-,¢(z)) has a local optimum at z, and so its partial derivative with
respect to that argument is zero. [
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9. Optimizing Dynamical Queueing Systems
In this section we combine dynamic rate queueing analysis and optimization to address three
decision problems in operations management. These three examples analyze three distinct

queuing systems: a loss system as well as both a single server and multiserver delay system.
Provisioning, pricing, and prioritization problems are considered in the examples.

9.1. Pricing Policy for a Loss System

First, let us consider the following dynamic pricing problem for a loss system as illustrated in
Figure 8. The service demand is a function of time and is sensitive to the price of the service.
Upon arrival to the system, with fixed capacity C, a joining customer pays 7 dollars. The
service provider guarantees a blocking probability no larger than e. The service provider uses
price as a dynamic control to maximize revenue while maintaining the blocking probability
service guarantees. The modified offered load approximation (Jagerman [24]) leads to a
deterministic version of the problem (see §2.3).
Problem 5.

T
r(T) = {w(t)I:I}Ja<')§<T}/O (At 7(t)) dt
subject to
G(t) =A(t,m) —p-q(t) where g(t) <86.

Recall that 0 is the threshold offered load. This is defined by setting 8¢ (0) =€, where ¢ is
the Erlang blocking formula.

We begin the analysis by writing down the Lagrangian for the problem. To do this, we
introduce a slack variable for the inequality constraint. The pricing decision for this Erlang
loss system is made by optimizing the integral of the Lagrangian

;C(p,?'[',q,q,x,y):ﬂ'A(ﬂ')—f—p(q—)\(ﬂ')—F/J,q)—f—l'(0—q—y2)’

where y is a slack variable. From the Euler-Lagrange equations, we obtain

_doL oL

— 2= — g, =13 >
o =o == O—q.=yl or 0>q. (26)
and
d oL oL
_GO0L_Ob L = L (0—q,)=0. 2
a0y~ oy T Y =0 or z-(0—q)=0 (27)

FIGURE 8. Diagram of multiserver loss queueing model for pricing decision.
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Using sensitivity analysis, we have

d
@(ﬂ'* A7) = T

The Hamiltonian for this system is

H(p,m q.x,y)=(p—7)- A7) +z-(y>+q—0)—p-p-q.

Hence by using Hamilton’s equations, we obtain the dynamical system formed by

) oM )

p==", = Dr=H D= (28)
and

. OH .

q—a—p = e =A(Te) — P g (29)

Applying the Pontryagin principle yields

x*‘yf:gleiﬁx*‘zzzo <— x,>0

and

(s (8) = m(t)) - A(m) (£) = min(ps () — 2) - Az, 2).

9.2. Provisioning Policy for a Multiserver Delay System

Motivated by call center staffing, we examine the dynamic provisioning of resources in a
multiserver queue with C servers as illustrated in Figure 9. Let customers arrive accord-
ing to a nonhomogeneous Poisson process. Further, let the service times be exponentially
distributed. Upon completion a customers pays the system r dollars. The cost per unit
time for resources is an increasing concave function of the number of servers, w(C'), where
w(0) = 0. The service provider’s objective is to maximize the amount of profit generated by
dynamically selecting the number of servers over a finite period of time. Following §2.4, the
number of customers in the system is modeled by a multiserver queue with nonhomogeneous
Poisson arrivals with infinite capacity waiting space and a FCFS customer service disci-
pline. Using Markovian service networks (Mandelbaum et al. [33]) and strong approximation
theory (see §2.4) we have a deterministic approximate problem.
Problem 6.

T
r(T) = {C(t):moa<xt<T}/0 THL min(q(t),C(t)) —w(C(t))dt

where
() = A(t) —min(q(t),C(t)).

The provisioning decision for this multiserver delay system is made by optimizing the
integral of the Lagrangian
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L(C,p,q,d) =7 (gAC) =w(C)+p- (4= A+u- (aAC)).
If we construct the Hamiltonian, we obtain

H(C,p,q)=p- (A= (gNC)) +w(C)—rp-(gAC).
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FIGURE 9. Diagram of multiserver delay queueing model for provisioning decision.

A(0) 2 - min(Q (1), C(1))

a
>

v

r=revenue per customer

Now we make the assumption of economies of scale for the cost of the servers. This makes
w an increasing concave function and we then have by Pontryagin’s principle

H(C*7p*7q*) = glé%H(C7p*7Q*) ZHl(prI*) /\HZ(p*aQ*)7

where

Hi(p,q) =H(O0,p,q) =p- A

and

Ha(p,q) =H(g:p,0) =p- (A —p-q) +w(q) —ri-q.

Using Hamilton’s equations, we then have

b= 0 when M1 (ps, <) < Ha(ps, gs),
po (P +1) —w'(q)  when Ha(pe, q) < Hi(p«, qx),

q _ A when H1(p*,q*)<H2(p*7Q*)7
* A—p-q« when Hg(p*,q*)<7'l1(p*,q*)7

where ¢(0) is given. We can then compute p, and g, by solving these equations. We can
then determine C, to be

c :{O when Hl(p*,Q*)<H2(p*aq*)a

g« when Ho(pu, qx) < H1(ps, @i)-

9.3. Prioritization Policy for a Single Server Delay System

Next, we consider a priority problem for a multiclass PS queue. The service provider dynam-
ically prioritizes each class to maximize revenue over a finite time horizon. The fluid model
for the PS system with one permanent job and two customer classes is
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=X —00(w,q)
with

g

0\ (w,q) = wo + wDg) + w@g@"

fori=1,2.
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Using vector notation, we can write this as

q=A-0(w,q),
where
at)= (M (1),¢?®), A=), A1), w=w w?)
and
O(w,q) = (01 (w,q),0® (w,q)),
where
9(1)(W7q) _ ppwD g and 0@ (w,q) = pow®q®

wo + u}(l)q(l) —+ w(2)q(2) wo + u}(l)q(l) —+ u)(2)q(2) ’

To maximize the revenue over time (0,77, the Lagrangian is
L(p,q.q,w)=1-0(w,q)+p- (- A+0(w,q)).
where r = (r1,79) and p(t) = (p™(t),p? (t)). It follows that the Hamiltonian is
H(p,q,w)=p-A—(p+r)-0(W,q).
Now we define the total output rate at time ¢ when weighted completely for the class 4

customer class and the permanent job or

N _ (1 — we)g@
9(1)(15) = ((1 —wp) - €y, Q(t)) = £+((11 _ 133;]q(i)(zz)f)'

Note that
lim 0 (t) =
wolo 0 if ¢(t)=0.

Given the optimal phase-space path (p., g.), the weights w(?) and w(® solve the following
static optimization problem by Pontryagin’s theorem.

m.

H *y Jxy =H *y Yx AH sy Ux )y
O LA, (P+,Ae, W) = Hi1 (P, du) A Ho(Ps5 Ax)

where .
Hi(p,q) =H(p,q, (1 —wp) - ;) =pMA +p@ N — (pW +7;) - 6.

Hence, the index i yields the smallest opportunity cost rate H;(p,q), or equivalently the
largest value rate of the competing Lagrangians, if and only if it yields the largest (p(i) +7i)-
6. This product is a variation on the cu-rule. Here, the total “reward” per class ¢ customer
is p +r;, which is the revenue from serving a class i customer plus the opportunity cost
savings obtained from having a customer depart the system now.

Finally, when 4 indexes the smallest Hamiltonian (or the largest Lagrangian), then from
Hamilton’s equations we have

o __ 9 4
b’ = =g @ (P e W)

D ey 9 (1 wo
(p* +TZ) /'l’l 8q(1)< U}0+(1—’U)0)q(z)>
- (ng)"i‘?“i)'liiwm(l—wo)

(wo + (1= wo)gi")?

, » 56)
= (p ;)09 <1 _ b

o)

Otherwise, we have pii) =0. We either have q,(f) =\ — 0:(:) or ¢q

q@=q"

S) = )\;, respectively.
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To maximize the revenue over time (0,7 with a fair allocation constraint, the Lagrangian
is now

L(p,q.4,2,9,w) =r-0(w,q)+p- (4 —A+86(w,q))
ta- (y—061-0P(w,q) + 620V (w,q)),

where y(0) = y(T) = 0. Since the Lagrangian has no explicit dependence on y, then this
makes the multiplier (or dual) variable x a constant. Our Hamiltonian is now

Using similar arguments to the unconstrained case, we have

max H(p*,q*,W,IE):Hl(p*,q*,l')/\HQ(p*,q*,lE),
w: wo+wD 4w =1, w) .w(2) >0

where
Hi(p,a,z) =H(p,a, (1 —wo) -e1,z) =pM A +pP g — (M) + 7y +65-2) - 4D
and

Ho(p,q, ) =H(p,q, (1 —wp) - e2,) =pA +pPho = (M 47y =8y 2) - 0P,

10. Summary

Using the historical communications motivations for queueing theory such as building the
telephone network and designing the Internet, we can organize our fundamental queueing
models as follows:

service demand (arrival traffic);
resource demand (offered load);
service loss (voice services);
service delay (data services).

Ll e

From an operations research perspective, we use the Lagrangian formulation to model
the profit, revenue, and cost rates for our dynamic optimization problems. Through the use
of auxiliary variables, we can incorporate equality, inequality and isoperimetric constraints
into our dynamic optimization model. For example, a manager may want to achieve profit
maximization within the constraint of some acceptable quality of service level. Below, we
summarize the types of variables that we use with Lagrangians:

state variables;
multiplier variables;
dual variables;
slack variables;
control variables;
constants.
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The main use of the Hamiltonian formulation here is computational. Unlike the
Euler-Lagrange equations, Hamilton’s equations are equivalent but always form an even-
dimensional dynamical system. Moreover, given the value of the state and dual variables,
the corresponding control variable solves a static optimization problem for the Hamiltonian.
Unfortunately, we have the mixed boundary conditions of the initial state variable and dual
state variable values. Specific examples, physical intuition, and numerical methods suggest
simple iterative methods that can find the solution to these equations.
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In the framework of classical mechanics, the Lagrangian does not appear to have a physi-
cal interpretation. It is merely the mathematical object whose optimized time-integral yields
Newtonian mechanics. By contrast, the Hamiltonian and the momentum variable have physi-
cal interpretations since they can be conserved quantities. Care must be taken to numerically
integrate the time evolution of the state and dual variables in time directions that respect
the well posedness of their governing differential equation.

In the framework of queueing operations, unlike physics, the Lagrangian has a natural
interpretation as a value rate. Instead of saying “kinetic minus potential energies,” we can
say “revenue minus cost rates,” and this is a “profit rate.” At first glance, the Hamiltonian
and the dual or generalized momentum variables do not seem to have natural interpreta-
tions, which is the reverse of situation in physics. We can remedy this situation, however,
by using the Bellman value function, the Hamilton-Jacobi-Bellman equations and the eco-
nomic interpretation of the partial derivative. If our state variable is the average number of
customers in the queueing system, then our momentum variable is the opportunity cost per
customer incurred by admitting a customer. In general, it can be viewed as an opportunity
cost density. The Hamiltonian is now the opportunity cost rate since it is the partial time
derivative of the Bellman value function. Table 1 summarizes these relationships between
the operational queueing quantities of interest and their classical mechanical counterparts.

The four fundamental operations problems that we address using these dynamical systems
and dynamic optimization methods are as follows:

performance (quality of service predictions);
pricing (quality of service control policies);
prioritization (resource allocation policies);
provisioning (resource design policies).

b=

By performance, we mean using queueing theory to make quality of service predictions for
the communications system. The price of service influences its demand; hence dynamic pric-
ing can control the quality of service. The pricing policy from our analysis of a multiserver
loss queue can be summarized in Table 2. Given a fixed number of resources, prioritiza-
tion policies efficiently allocate scarce resources to the differing classes of customers. The
prioritization policy from our analysis of a single server delay queue can be summarized in
Table 3. Finally, provisioning policies enable the manager to design a communication service
by finding the most profit optimal way to add resources over time. The provisioning policy
from our analysis of a multiserver delay queue can be summarized in Table 4.

It is through the analysis of various fundamental dynamic rate queues that we find simple,
low-dimensional, dynamical systems to approximate the time evolution of the mean behavior
of the original queueing model. In this tutorial, we show that calculus of variations techniques
can give insight into the canonical dynamic optimization issues of dynamic rate queues
motivated by communication decision problems.

TABLE 1. Classical mechanical terms and their queueing operations
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counterparts.

Mechanics Operations
q Position Number of customers in service
q Velocity Customer flow rate
L(q,q) Lagrangian Value rate
D Momentum Opportunity cost per customer
H(p,q) Hamiltonian Opportunity cost rate
V(q) Action Bellman value function
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TABLE 2. Pricing policy for a multiserver loss queue.

Time Dual State Control Multiplier Slack
region variable variable variable variable variable
<0  pPe=p-ps Ge=ATe) =g g M) = (P — ) z. =0 y:=0—q.
X(m)
=0 pe=p-pe—x Go=—(p-g—Am))"  m=2"(u-0) T =p Y+ =0
(me +1/N (7))

TABLE 3. Prioritization policy for a single server delay queue.

Opportunity cost Dual State Control
rate minimum variable variable variable
Hi(Px, Ax, W) 1’-'79) = (pﬁl) ‘|:T1) . éﬁl)(t) IR VR wi =1 —wyo
(100 /m) 0 = o wl® =0
Y =0
V=0 @ = wi =0
Ha(Psr Qs W) PP =P +r2) -0 (1) P =2 — po-¢¥ wi =1 —wo

(1= 02 (1) /2)

TABLE 4. Provisioning policy for a multiserver delay queue.

Opportunity cost Dual State Control
rate minimum variable variable variable
Ha(pergs) pe=0 G = A C.=0
Ha(ps, ) Pe=p- (P +7) —w'(gx) Ge=X—pu-qs Ci = q.

Appendix. Linear Dynamical Systems and Markov Processes

Matrix Exponentials

Ordinary differential equations that only involve first derivatives are not as limiting as might
first appear. Consider the following example.

Problem 7 (Linear Ordinary Differential Equations). Consider the differentiable
function : [0, 7] — R that solves the nth order ordinary differential equation

dx d"x
ao-az(t)—l—al-—(t)—i—-u—i—an-(ﬁ—n

- (t)=0. (30)

Rewrite this equation as a linear function of ¢ and %q.
Solution. If we define q(¢), where
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alt) = o0, S5 0) . T 0]

then we can rewrite (30) as

—a(t)=q(t)- A, (31)
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where

00 0 -+ 0 —ap/an T

10 0 -+ 0 -—ai/a,

01 0 - 0 —ay/a,

A_:
0 0 0 o 0 —ano/an
10 0 0 - 1 —a, 1/a,]

The deterministic process {q(t) |t > 0} is referred to as a linear dynamical system. Moreover,
it has the explicit solution of

q(t) =q(0) - exp(tA),

where the square matrix factor is called the matriz exponential or
(oo} tn
exp(tA) = Z EA".
n=0

It is important to note that if the coefficients of the ordinary differential equation (or the
matrix A) are time dependent, then the solution to q(t) is not the matrix exponential of
the integral of the family of matrices {A(s)|0 <s <t}. This means that, in general, the
solution to

Salt)=a(t)-A() (32)

is not the matrix exponential of the integral of this family of matrices or
t
alt) #a(0)-exp( [ A as).
0

We can make this concept work, howevgr, by using the convention of time-ordered opera-
tors due to Feynman [10]. First, define {A(s)|0<s<t} to be a family of formal matrices
with the property that for all pairs of times r < s, we have

A(r)-A(s)=A(s)-A(r)=A(r)- A(s).

Now we can write our solution to (32), as the formal expression
t ~
alt)=a(0)-exp( [ Als)as).
0

Uniformization and Uniform Acceleration
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For the case of a Markov process, the time evolution of the probability of being in a specific
state is a dynamical system. These are also called the Kolmogorov forward equations. The
governing matrix A is referred to as a Markov generator. Such generators have positive
off-diagonal entries and row sums equal to zero. Assuming that all the diagonal terms over
the interval (0,¢] are bounded by a constant «, then we define the matrix P, (s) to be

P.(s)=1+ éA(s)
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for all 0 < s <t, where I is the identity matrix. These are called stochastic matrices where
their entries are positive and row sums equal one. Using our operator convention and letting
P, (t) be the time-ordered analogue to the stochastic matrix P, (t) at time ¢, we have

¢ ¢
exp(/ A(s)ds) = exp(—atl—i—/ oI+ A(s) ds)
0 0
1[5
e . exp (at- —/ P.(s) ds)
tJo

Il
[~]e
('b‘
g
z—-A
Q
Nt
3
7 N\
S
:3\w
el
Q
=
QU
®
¥/§

n=0
() e—at (at)" n' R R

- ZO n! t_" Pa(sl) ’Pa(sn)d81-~dsn
n=

0<s1 < <spn <t

X —at £)" !
:Zﬂ. // Pa(sl)"'Pa(Sn)'n_dsl"'dsn-
0<81 < <sp<t

We now show that deeper results for Poisson processes give this sum a probabilistic inter-
pretation.

The lead scalar factor for each summand is the probability of a Poisson process making
n jumps during the interval (0,¢]. A homogeneous Poisson process has the property that
conditioned on this event, the joint distribution of the n jump times equals the same for
the order statistics of n 1.i.d. random variables that are uniformly distributed on (0,¢]. This
means that the sample paths of this time-inhomogeneous Markov process are driven by the
jumps of a Poisson process with rate a.. At precisely these jump times, the process makes an
instantaneous transition according to a time-inhomogeneous Markov chains whose stochastic
matrices are specified by the time of the Poisson jump.

In turn, this sample path decomposition, called uniformization, yields a sample path
interpretation of uniform acceleration. For a given scale parameter 1 > 0, we have

oo

exp</0tn.A(5)ds>=ZM // Pa(sl)"'Pa(Sn)'i!dsl"'dsn'

n! tn
n=0 0<s1< <8y <t
From this representation, we see that uniform acceleration speeds up the jump rate of the
underlying Poisson process but does not change the stochastic matrices sampled at any of
the jump times.
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