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AN OPERATOR-ANALYTIC APPROACH TO THE JACKSON NETWORK

WILLIAM A. MASSEY,* AT&T Bell Laboratories

Abstract

Operator methods are used in this paper to systematically analyze the
behavior of the Jackson network. Here, we consider rarely treated issues such as
the transient behavior, and arbitrary subnetworks of the total system. By
deriving the equations that govern an arbitrary subnetwork, we can see how the
mean and variance for the queue length of one node as well as the covariance
for two nodes vary in time.

We can estimate the transient behavior by deriving a stochastic upper bound
for the joint distribution of the network in terms of a judicious choice of
independent M/M/1 queue-length processes. The bound we derive is one that
cannot be derived by a sample-path ordering of the two processes. Moreover,
we can stochastically bound from below the process for the total number of
customers in the network by an M/M/1 system also. These results allow us to
approximate the network by the known transient distribution of the M/M/1
queue. The bounds are tight asymptotically for large-time behavior when every
node exceeds heavy-traffic conditions.

STOCHASTIC ORDERING; TRANSIENT BEHAVIOR; TENSOR REPRESENTATION; SUBNET-
WORKS

1. Introduction

In this paper, we analyze the behavior of the Jackson network. Recall that this
is an N-node network where the ith node is an M/M/1 queue with arrival and
service rates A; and u,; respectively. The queues are connected by an N X N
switching matrix P where a customer, after receiving service at node i, leaves
and joins the jth queue with probability p;. With probability ¢, =1-32X, p;,
however, it may decide to leave the network entirely. We shall always assume
that p; = 0 for all i. Since the Jackson network is formally a collection of M/M/1
queues, we take liberties with Kendall notation and henceforth refer to an open,
single-server, N-node Jackson network as (M/M/1)".

Let Q: (1) represent the random queue-length process for the ith node. Given
the above formulation, the vector process (Qi(t), " - -, Qn (1)) is Markov. In the
spirit of the approach for the M(t)/M(t)/1 system (see Massey [5]), we apply
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380 WILLIAM A. MASSEY

operator methods to the Kolmogorov forwards equations for this Markov
process. In Section 2, we use tensor product spaces to identify the primitive
operators that generate the infinitesimal operator. This allows us to write down
these equations in a compact but informative way. Section 3 demonstrates the
power of the operator analytic approach by deriving new bounds for the
transient behavior of the (M/M/1)" system in terms of the known transient
behavior for the M/M/1 queue. We derive a stochastic bound of significance in
that it is not equivalent to the usual stochastic ordering (Kamae, Krengel and
O’Brien [3]). This means that this inequality cannot be derived by ordering
sample paths.

Finally, in Section 4, we focus our attention on an arbitrary subnetwork of the
system and consider the equations that govern it. We then use the subnetwork
equations to derive differential equations for the mean and variance of the queue
length associated with a node, as well as the covariance between any pair of
nodes.

2. Tensor representation

Through the use of indicator functions, Q;(t) can be written as
Q)= ZO n - Liow=n-

Now suppose that given the event {Q;(t) = n}, we encode the corresponding
information not as n, but as e,, the I,-vector of all zeros except for a 1 in the nth
place. We define this /,-random variable as ¢ (f, ») where

q; (’) = Zo €’ I(O,-(l)=n)-

This representation is a way of encoding all of the possible events of Q; (1). If we
take the expectation of q:(t), then E(q;(t)) is a vector representation for the
distribution of Q;(t).

We can do a similar representation for the entire network. Here, we let the
quantity p(¢) be an /;-tensor of rank N with the (n,, - - -, ny )th component being
p(ny,- -+, nny;t) where

p(nl’ MR (NI t) = Pr{ol(t) =Ny, QN(‘) = nN} = E(I(O|(l)='l|) ot I(ON(1)="N’)‘
Hence p(t) can be written compactly as
P()=E(@()® - Qqn (1)

The Banach space that p(f) belongs to is I{"’, or I, tensored with itself N times.
If gi,- -, gn are [, vectors, then g, Q- - - @ gv = QI g belongs to I{™. For the
case N =2, the tensor product has the following bilinear properties:
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(g1+gz)®h=gn®h+gz®h
gRh+h)=gQ@h+gQh:
(ag)Qh=gQ(ah)=a(g® h).

Since the e,’s form a basis for [,, then tensor products of the form e, ® - - - ¥ e.,
constitute a basis for I{*’. An element p of I{" is positive, denoted p =0, if the
coeflicient for each basis element is non-negative. Similarly, for all p and ¢ in
™, we say that p = q if p— q = 0. For all operators A and B on [{", we say that
A =0 if for all p in [{", we have pA =0 whenever p=0, and A =B if
A — B = 0. We define an ‘l,-norm’ on [{"’ by summing the absolute values of the
coefficients of each basis element. From this, it follows for example, that

N

Q&)

i=1

-l0®  @al=1]lsl

For each i =1,---, N, let A; be a bounded operator on [,. We define QL A,
so that

(@5)[@4]-@sa

Extending by linearity, ®i_, A; becomes a bounded operator on I{*’. We now
have the means to write down succintly the birth and death equations for
(M/M/1)".

Proposition 2.1. Let the components of p(t) be the joint distribution for the
queue lengths of (M/M/1)". Then

d -
@.1) 72; P =P(DA.
Using R and L, the right- and left-shift operators on l,, we can write A as

2.2) A=)

N
i=1

N
{AiRi + Miq.'Li + 2 ;L.-p,-,-L;Rj —Ad— [.L,-L;R,]
j=1
where
R=IQ - -QRR---R1 (ith place)
L=IQ QLR -1 (ith place).

Proof. 'This representation can be easily verified by noting that these birth
and death equations are derived from thinking of flows in and out of states. For
example, observe that R; acts on p(t) through the right-shift operator acting on
q: (1) and leaving the other g¢;(t)’s fixed. So if a customer arrives with rate A; to
the ith node at state
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{Qi)=n4,-- -, Q()=n;—1,---, On (1) = ny}

then we have made the transition to state
{Ol(t) =ny,cco, Q (t) =ni---, QN(’) = nN}.

Furthermore, the properties of the right-shift operator take care of the tech-
nicalities that arise when n; = 0.

Each term in A has a similar interpretation and by inspection we have
properly encoded all of the birth and death equations.

Using this notation makes it easier to analyze what would otherwise be an
unwieldy set of equations. We shall demonstrate the benefits of this approach in
the following sections.

3. Stochastic bounds for the transient behavior

For any given (M/M/1)" system, we can derive the following set of stochastic
bounds.

Theorem 3.1. Let Xi(t),---, Xn(t) be a collection of independent M/M/1
queue-length processes where X (t) has arrival rate A, + =}, w;p;;, service rate w;
and X; (0)= Q;(0), then

3.1) Pr{Q:(t)=n,, -, On(1)Z Ny} = li Pr{X:(t) = n:}

for all t >0, and all non-negative integers n,,- - -, nn.
Now let Y(t) be an M/M/1 queue-length process with arrival rate =i, A;,
service rate 2L, wqi, and Y (0)=Z2I, Q,(0), then

Pr {‘2 Q@)= n} =Pr{Y(t)= n}

for all t and all non-negative integers n.

If we use the notion of stochastic ordering in the sense of Kamae, Krengel and
O’Brien [3] (which we will denote by =), then Theorem 3.1 says that
Y (1)=.2, Qi (t). Despite the suggestive inequality (3.1) between the joint
Markov processes (Qi(?),- - -, O~ (¢)) and (Xi(2),- - -, Xn (1)), however, it is never
the case for non-trivial (M/M/1)" networks (p;#0 for some i and j) that
(O:(2), "+, On (1)) = (Xa(2), - - -, XN (2)).

Theorem 3.2. For any (M/M/1)V system with (Qi(t), -, On(t)) and
(Xi(t),- -+, Xn(t))  defined as in  Theorem 3.1, the  result
(Qi(1),- -+, On (1)) Za (Xu(2), - - -, Xn (1)) holds if and only if p;# O for some i and
j
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Notice that Theorem 3.2 is equivalent to saying that (Q:(t),- - -, O~ (?)) and
(Xi(t), - - -, Xn (1)) can be stochastically ordered using =, if and only if they are
identical in distribution. By the equivalence results of Kamae, Krengel and
O’Brien [3], Theorem 3.2 also says that (3.1) will never yield a strict sample path
ordering between the two processes. In [6], similar bounds are derived for an
open network with different classes of customer.

Proof of Theorem 3.2. The state space for the two processes is Z%, the set of
non-negative integer N-tuples. The stochastic ordering in question is induced by
the vector ordering that we defined previously. Suppose that p;# 0 for some i
and j, then g; # 1 for some i. Given n = (n,, - - -, ny) in Z% with n; #0, define the
following subset of Z%":

[i={m|meEZ¥withm=n—e orm=n—e +e for some j# i}

where the e;’s are the basis unit vectors of Z%.

Now set Q; (0) = X; (0) = n; for all i. T'; is an increasing set, that is if m €T'; and
m’' = m, then m’' €T';. So if a relation like =, holds between the two processes,
we should have for all t =0

Pr{(Qi(t), - -, On (1)) ET:} = Pr{(Xi(2),- - -, Xn (1)) ET:}.

Both processes are Markov, so if we subtract the number one from both sides,
divide by ¢, and let t go to 0, we get the respective infinitesimal rates of flow out
of the set I'; from state n. However, this gives us ~ wiq; = — ;. Since g; is strictly
less than 1, we get a contradiction. Therefore the relation =, cannot hold.

On the other hand, if p; =0 for all i and j, then (Qi(t),---, O~ (?)) and
(Xi(t), - - -, X (1)) have the same distribution so the relation =, holds trivially.

In a stochastic sense, Theorem 3.1 states that (X,(z), - - -, Xx (2)) is an ‘upper
bound’ for (Qi(t),---,On(t)) and Y(t) is a ‘lower bound’ for =L, Qi(t).
Moreover, these bounds hold for all time so we have estimates for the transient
behavior of an (M/M/1)" system in terms of the transient distribution for an
M/M/1 queue which is known (see Gross and Harris [1]). The proof of this
theorem will illustrate the applicability of operator methods to queueing
networks.

This first step is to create two additional operators. If L is the left-shift
operator on [,, then (I — L)™' is a positive unbounded operator on [, where

e,.(I—L)"=e,.-kZOL".

This operator is well defined on the basis elements, so (I — L)™' has a dense
domain. Now define K; on [{™ where

K=IQ  QU-L)'® --QI (ithplace),
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let K, = I1;4 K;, and define K =II,, K;. Now let § be an operator that maps /{"

to I, as follows:
N

(® e,.i) S=en

i=1
where m =3, n,. Unlike K, § is a bounded operator but both of them are
positive.

Proposition 3.3. K and S have the following properties :

(1) RK =K + KR,

2) LK=K-K

(3) RS =SR

(4) LS =SL.

Proof. By definition, we can think of K; as I+ L;+ L{+- - -, therefore we
have LK; = K; — I and RK; = K, + R; since R.L;.= I. The rest follows from the
definition of K.

To prove the identities involving S, one need only show it for the basis
elements and the rest will follow by linearity. For example, if m = Z{_, n;, then

(é e,.i) RS =en.1=e.R = (é e..,.) SR;

i=1 i=
by a similar argument we prove (4).
The purpose for K and § will now be made clear.

Proposition 3.4. If p(t) is the rank-N tensor belonging to I that represents
the joint distribution for an (M/M/1)" system, then

£

p(OK = '20- - zoPr{O.(t)é ny, -, On () Z nn} @ e,

ny =

p(t)S = ZOPr{Q,(t)+ <o+ Qn(t)=n}e,.
Proof. Recall the definition of ¢;(t) and apply (I —L)' to it

(I -L)"'=2 Low-pe 2, L*
j=0 k=0

I
8

Z Lio,-ir€j-x
k=0 j=k

I
M
\ZE

I(O,«(t)=m+k)em
0 k

0

3
|

= I(o,-(x)gm)em-
0

3
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It then follows that

N

(® q.u)) =@a -1y’

o N
z I(O|(')2m|) e I(QN(')imN) ® €m;.
N =0 i=1

The first identity then follows by taking expectations. The second equation
follows similarly after applying S to ®:_, i (1).

||[\48

A key element in proving Theorem 3.1 is to compare two semigroups. We now
derive an identity essential towards achieving that end.

Lemma 3.5. LetA and B be bounded operators on some Banach space, then
exp(tA)—exp(tB)= f exp(sA)(A — Bexp((t —s)B)ds.
0

Proof. Let €(t)=exp(tA)—exp(tB). This operator is differentiable with
respect to t so

:id? Q(t)=exp(tA)A —exp(tB)B
=Q(t)B +exp(tA)(A — B).

Now €(0) =0, so by Duhamel’s principle, we have the desired results.
Now we can prove the main theorem.

Proof of Theorem 3.1. Let A be the generator given for the (M/M/1)"
system as in (2.2). Now set A=A+ L, wp; and make A, =
AR + wili — AT — wLiR;:. A collection of independent M/M/1 queues, namely
(Xi(1), -+, Xn (1)), is a trivial case of an (M/M/1)" system with all of the p,’s
equal to 0. Therefore =L, A; is the generator for the joint process of X;(1)’s.

By (2.1), p(1) for (M/M/1)" equals p(0)exp(tA ). By Proposition 3.4, we want
to show that

N
32) pO)exp(tA)K = p(O)exp (z 3 Ai) K
i=1
Since p(0) is always a positive vector, we need only show that
N
exp(tA)K =exp (t . z A.«) K
i=1

Keilson proves in [4] that a semigroup like exp(f4 ) yields a positive operator for
every instance of ¢ if and only if every non-diagonal element of the generator,
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namely A, is positive. From this is is clear that exp(tA) and exp(t - 2/, A;) are

positive. Moreover, by Proposition 3.3, we have that
K_|A,'K = A:R, + [.L,L?R, - (A:'f‘ ,L))Lle
and so K™'exp(t- =L, A))K is positive also. By Lemma 3.5, we have

exp(tA)K —exp (t . 2 A;) K

1

- L exp(sA) (‘ _i A") K- K™ exp ((t —s)g A.) Kds

so to prove (3.2), it is sufficient to show that =L, A K = AK.

N

r N
AK = AiR) + [.L,'qlLi + 2 [.L,'piiL.'R,' - A,I - MiLiR‘:I K
L =1

Il
M

[ N
AKoHR; + wgLK + ’Zl wipiLi (KR + K)— wL; (Ki)R; + K )]
3.3)

i
Mz

r N
AKoRi + ’Z‘ wipiLiK;,R; — MiK(i)LsRl]

N

- N N
2 (As + ,2' I.L;Pii) KR — wKLR — Z M:Pi/K(Li)L:R;]

1
i=1 i=

where K;)=Il..:;K.. But K;,LR; is a positive operator, so

N
AK = 2 [A :'K(i)Ri - MiKu)L;R,-]

i=1

= Z. [AIR:(I— L) — wLiR; (I - L)]K

1A

N
> AK.
i=1

To prove the second part of the theorem, let A* =2, A, u* = =L, pq; and
B=A*R+u*L —A*I—u*LR. B is an operator on /, and is the generator for
Y (1). We want to show that

exp(tA )SK = S exp(tB)K.
We can modify the proof of Lemma 3.5 to say that
exp(1A)S — S exp(tB) = I exp(sA)(AS — SB)exp((t — s)B)ds.
0

Again, K" exp(tB)K =0 so we need only show that ASK = SBK. Note here that
K=(I-L)"
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N N
ASK = 2 [A,'R,‘ + ’Liq,'Li + Z ’Lipi,'L,'Rj - /\,I - IL,L;R:] SK

I
iz

[A.SR + piglLS + 5_‘, wip;LSR — AS — p..LSR]

Il
Mz

> [AS(R — 1)~ pqLS(R - DIK

_Mz

N
) SR — Y wqLSR

i=1

IV

S(A*R —pu*LR)
SBK

v

and this proves the theorem.
We now show when these bounds are tight.

Theorem 3.6. Suppose A; + =1, w;pi > w; for all i, then as t —>
.1 R
lim = E(Qi(1)=Ai+ Z MiPji — M
b=

Proof. By Theorem 3.1, E(Qi(t1))SE(Xi(1)) and ZXL, E(Qi(1)=
ECYL, Q. ()= E(Yi(1)). But the X;(t)'s and Y(t) are M/M/1 queue-length
processes, and their asymptotic behavior is known (see Massey [5]). By the
hypothesis, we have as t —

3.4) EX (@)= (A. + ; Mipji — M«.) t+0O(1).

Notice that

i <Ai+gﬂjpji_ﬂi)=g[Ai+’~Li(l_qi)_“i]=gAi_i=ilp’iqi

N
so the hypothesis also implies that =}, A, > > j.qi, hence
i=1

3.5) E(Y(t)= (i DY uiqi) t+0(1).

By (3.4) we have

(3.6) lim sup E(O,(t))< At 2 WiPi — M-

t—0

On the other hand, by (3.5) we get

liﬂinf% .Z. E(Q:(1)= _Zl Ai— '_Zl Hiqi = Zl ()h +; Mipi — P«')
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but (3.6) implies that

llr{l_’swup % IZI E(Q; (1)) = 2 (M +,’Z| MiDji — I.l-i) .

Therefore,
G.7) limp 3 E(Qi(0)= A~ % .

From this it follows that

N

; limsup%E(Qs(t)); z (A.- +,'21 WiDji —[.L,-) .

1—>0 i=1
Since (3.6) holds, we must have

(3.8) limsup 1 E(Q:(0)= A+ 3 s — b

Finally, (3.7) combined with (3.8) implies that

N
Iim '} E(O, (t)) = A,‘ + 2 MiDii — Mi for all i.
1—o =

4. Subnetworks and moment formulas

Define 1, as a linear map from I{"’ to @il where
Y

(é&)'L:il;[’(gi‘l)'@gi

we then extend to all of I’ by linearity. We shall be doing calculations with 1;,
R, and L;. Here, we show for example, how 1; and R; interact.

1. ifiel,
R,'l] =

1.R. ifiZl
Technically, in the second case, the R; on the left is an operator on [{", whereas
the one on the right acts on g /;. We shall abuse notation and let R; denote
both.

Proposition 4.1. Forany (M/M/1)" system, let I be any subset of the index set
{1,2,---, N} and define p'(t) as

PO=E(®aw).

i€l
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Then p'(t) represents the joint distribution for the subnetwork of (M/M/1)"
indexed by I and it satisfies the equation

d N
2 P'O=p (A + 2 5 wpi(0;0)p (I~ R)
i€l &I

where p}(0; t) represents the joint distribution of {Q; (1)}ic: and the event {Q; (1) =
0}, and

A= 2 [(Ai + Z ,U—jpji) Ri + pi ((Ii +.2 pij) L;
JEI JEI

i€l
+ 2 mipiLiR; — piLiRi — ()\i + Z MiPﬁ) I] .
Icy JE1

Proof. Notice that |q;(1)|,=qi(t)-1=1. Since p'(t)=E(Rici1q:(t)), we
define (I') to be the complement of the index set I, and then p'(t) = p (1) 14,. We
now apply 1, to (2.1) making use of the following identity:

1(,)R,’. if i e I,
R,’l(}) =

1y if igl

where Li14) = 1()L; abusing notation, if i belongs to I, otherwise, we leave it as it
is.

Alg =1q 2 AR + 1q) Z Ai + 1 2 miqiLi + ; miqiLila,
i€l iZl / i€l iZl
N ) N
+ 2 miLila ( Z piR; + E pii) —1u 2 wiliR; — Z mililay— 14y X, A
i=1 JjEI jE1 i€l il i=1
=1q 2 [MR-‘ + pigili — pLiR; + L ( 2 piR; + z pii) - AiI:I
i€l i€l il
+ illii ;iR + i ilqi — i
S mLil (3 PR+ 3 pi)+ S wala~ DL
= 1(1) [ 2 AR + Mi (q.» + ; Pi,‘) L, — MfiLiRi + 2 #iPi,'LiRj - )‘J]
i€l &l JjEI

- g, ’; wiL;1api (I — R).

Now we observe that p/(0; 1) = p (t)(I — L;)1 for j not in I, and the rest follows.

Proposition 4.2. For any (M/M/1)" system, the following differential equa-
tions hold for the mean and variance of the i-th node, as well as the covariance of
the i-th and j-th nodes:
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(% E(O: (t)) =A+ IZ' MiDji — Mi + pipi (O, t)— ;’ WD (0, t)p,','
Edt- Var(Q;(1))= A + ;' wipi + i — i QT (1) + pi(0; 1))
+ ;' wip;i 2T (1) — p; (05 1))

% Cov(Qi (1), Q; (1)) = — (mipy + wipi) + ip Tisi (1) + pi (0; 1))
+ pipi Ty (1) + p (05 1)) — i Ti () — T (1)
+ Z}I-Lkpkiri;k )+ ;_}Lkpkjr‘j;k (1)
k#ij k#ij

where p,(0;1)=Pr{Q.(1)=0}, T.;(1)=E(Q:(1))p0;1)~ E(Q, (1); Qi (1) =0),
and in particular, ' (t)= E(Qi (1))p: (0; ).

Proof. Foreachi=1,---,N;let p,(t) = p'(t). By Proposition 4.1, we have
d = ;
@.1) 21 P(0=POA+ 2, wpi(0; pi (I - R)
dt =
where
N N
A.=(A,+ i ,)R+ .L_ ,LR_(/\,+ i ,)I
2, wips) R+l — 2, P
since p; =0. We shall identify the necessary calculations for each formula.

Case 1: E(Qi(t)). Let n=[0,1,2,---]" then p;(t): n = E(Qi(t)). By in-
spection, we can see that

N
An = ()\i + Z M;Dji _I-lu') 1+ Mi€o
iZi
(I-R)n=—1.

Now apply n to (4.1). Since pi(t)- €= p;(0; ) and pj0;1)-1=p;(0;1), we have
the formula.

Case 2: Var(Q:(1)). Let n*=[0%1%,2%---", then pi(1)-n*=E(Q:(1)).
Furthermore,

N N
A;nz =2 (A, + 2 MiDii — [.L,) n+ (A, + ’Z MiDji + ’-"1) 1- Mi€o
i#i i

(I-R)n*= —(1+2n).
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Since p;(0;1)- n = E(Q:(t); Q;(t)=0), then

"% EQi(1))=2 <)\-' + 2‘ MiDji — P«') E(Qi(1))+ (A-' + ;N: mipji + P«i) —wpi(0;1)
4.2 N N
= 2, wipspi 03 )=2 2 wip:E(Qi(1); Oy (1) = 0).

On the other hand,

d 5 d
77 E(Qi(1)) =2E(Qi (1)) 7 E(Qi(1))
“4.3) =2 (Ai + ; Mipji — !Li) E(Q:i(1))

N
2T (1) = 2E(Qi (1) 2, wips O; pi
] 1
Subtracting (4.3) from (4.2) then gives the desired result.

Case 3: Cov(Qi(t),Q;(1)). We refer back to Proposition 4.1 for the case
I={ij}.

P70 =p (DA + 3 uupll0; ) (pu (I~ R)+ py(I ~R)

where

N N
Aii = <)\, + z ﬂkpki) R.* + <)\, + Z IJvkpkj) R,'
i KZij

k#ij
N N
+ Wi <(Ii + 2}Pik> L+ I»‘vi(qi + 2.171"‘) L;
k#ij k #i,j
+ wip;LiR; — wLiR: + w;p;LiR; — w;L;R;
N
— (i + )T - ;m (i + pii)I
k#i,j
N N
N N
+ i (q.» + k;'i pik) Li + p; <q,~ + k;,i pik) L;

+ wipLiR; — piLiR; + p;p;LiR; — p,L;R,;.

Now Rn =n +1 and Ln = n —1+ e,. So consider the quantity n @ n. If we let
the first n be in the ith entry, and the second one in the jth entry, then we get the
following set of formulas:
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LR (n@n)=(n—1+e)Q(n+1)
=nR®n-1Q®n+e,@n+nR®1-1RX1+e®1
LR(n®n)=n®n
R-DN(n@n)=1Qn.

There is also a dual set of formulas when the roles of i and j are reversed.
Applying n @ n to A;, we get

Ai(nQ@n)= (M +kijll-kpki) 1Q®n +(Ai +k§;,;“kpkj) n@1
+p,,~(q,-+k2ip,-k) n@n—-1xn+e,RQn)

0+ 3 p) @ -n@1+n®e)

+upin@n-1Qn+e@n+nR1-1Q1+e®1] .
+upi[n@n-n@R1+nRe+1Qn-1Q1+1R e
—pn@n—punQ@n
= (/\i’*';ill-kpkl —I.L.-> 1Qn +(A,~+ziy,kpki—#i) n®1
= (wipi + Pl @1+ pipeo @ 1+ uipi1 Q eo
+I.L,'e0® n +[.L,'n ®eo.
Consequently,
P (A;(n@n)= (M + ;ﬁml’m _#-'> E(Q;(1)+ (/\i + g]_l-‘kpki _I"i) E(Q:(1))

“4.4) + wE (Q;(1); Qi (1) =0)+ wE(Q:(1); Q; (1) =0)
= (ipyi + pipii) + pipapi 05 1) + wipip; (0; 1).

Furthermore,
kzj pipi0; )(pa I —R)+ p(I—R)n Q@ n
@.5) = - k;iukpi’(O; D(P1@n +pyn Q1)

=— ‘ii i (PE (Q; (1); Qi (1) = 0)+ pyE(Q: (1); Q« (1) = 0)).
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Now we add (4.4) and (4.5) together and subtract off the next two expressions:

EQ ()45 EQu) = (A+ 3, uupus = ) E(Q (1)
+ wE(Q; ()P (03 1) = E(Q;(1)) 2, uupic (03 1)pu
EQ(0) § E©()= (X + g wpy — ) EQ.(1)

N
+ wE(Q: (1)p; (05 1) — E(Qi (1)) ; pipic (05 1)py.
]
After combining these four quantities, we are done.
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