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OPEN NETWORKS OF QUEUES: THEIR ALGEBRAIC
STRUCTURE AND ESTIMATING THEIR
TRANSIENT BEHAVIOR

WILLIAM A. MASSEY,* Bell Laboratories

Abstract

We develop the mathematical machinery in this paper to construct a very
general class of Markovian network queueing models. Each node has a
heterogeneous class of customers arriving at their own Poisson rate, ultimately
to receive their own exponential service requirements. We add to this a very
general type of service discipline as well as class (node) switching. These
modifications allow us to model in the limit, service with a general distribution.
As special cases for this model, we have the product-form networks formu-
lated by Kelly, as well as networks with priority scheduling. For the former, we
give an algebraic proof of Kelly’s results for product-form networks. This is an
approach that motivates the form of the solution, and justifies the various
needs of local and partial balance conditions.

For any network that belongs to this general model, we use the operator
representation to prove stochastic dominance results. In this way, we can take
the transient behavior for very complicated networks and bound its joint
queue-length distribution by that for M/M/1 queues.

FOCK SPACES; FREE SEMIGROUPS; STOCHASTIC DOMINANCE; KELLY NETWORKS;
TENSOR GEOMETRIC DISTRIBUTION

1. Introduction

In this paper we develop a complete operator theory for discrete-state
Markovian queueing networks. These queueing systems are governed by an
associated linear operator via the Kolmogorov forward equations for general
Markov processes. We construct the operator for the particular queueing
network in a manner that exploits the intrinsic algebraic structure of these
queueing models. This in turn gives us a more ‘hands on’, direct approach for
dealing with these systems, as we shall demonstrate.

The M/M/1 queue and the Jackson network are the basic corner-stones of
queueing theory for single-server systems and queueing networks respectively.
We shall extend these models to incorporate the complexity of different classes
of customers. For a single-server queue, this means that each class has its own
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Open networks of queues 177

Poisson arrival rate and its own exponential service distribution. The different
requirements of each class force us to be aware of the order in which customers
are served. This is something that we never do for the M/M/1 queue when we
consider its queue-length distribution. We need to define a general discipline
that determines where an arriving customer is inserted in line. It should also
determine which served customer is removed. Qur description of the discipline
will be general enough to be far more than adequate to describe first-come—
first-served (F1FO), last-come-first-served (LIFO), processor sharing (ps), and
even priority scheduling.

In addition, we allow for a special type of feedback which we shall call
internal switching. A customer having completed service will then hold its
position in line and change its class, with some given probability. These class
changes are governed by a probability switching matrix, which has the cus-
tomer eventually leaving the queue with probability 1. In this manner we can
model, for example, customers whose service time has a phase-type distribu-
tion.

The general network that we construct is a collection of single-server queues
as described above. Each queue for each node has its own type of discipline.
We merely add to this the notion of external switching. In addition to the usual
switching from one node to another as in the Jackson network, we allow for the
class of the customer to change also. Unlike internal switching, the customer,
when sent to the new node, is subjected to the insertion rule for that node.

In Section 2 we briefly review the functional analytic tools that we use to
represent the probability distributions of various queueing models. After that,
we undertake a fourfold plan to build up to our general network model. In
Section 3, we review the typical construction of the M/M/1 queueing system.
We then reinterpret it in operator notation. In so doing, we introduce the
fundamental notions of right- and left-shift operators. We also introduce the
two basic themes of the paper. First, we take the local and partial balance
conditions that occur for product-form networks, and reinterpret them in
simple algebraic terms. This leads to a purely algebraic proof for the product-
form networks discussed in Kelly [2]. The method of proof is one that is
elegant and motivates the various hypotheses for these systems. Second, we
develop stochastic dominance results. They will lead to estimates of the
transient behavior for rather complex networks, in terms of the known trans-
ient behavior for the M/M/1 queue.

In Section 4, we present the Jackson network. This is done purely through
the operator formalism, augmented by the use of tensor products. For this
queueing system and the rest, we modify the usual Kendall notation to denote
an N-node Jackson network with single servers as (M/M/1)™. In Section 5, we
present the class-dependent version of the M/M/1 queue, which we shall denote
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as M€/M€/1//GD. In describing this model, we make use of algebraic tools
such as free non-abelian semigroups and tensor algebras which are also known
as Fock spaces. Finally, in Section 6, all of these mathematical tools come
together to construct a very general class-dependent network model that we
denote by (MS/M€/1//GD)".

The techniques employed for proving stochastic dominance carry over com-
pletely to time-dependent arrival and service rates. In a future paper we shall
combine the results for the M(¢)/M(#)/1 queue in Massey [4] with the stochas-
tic bounds derived in this paper. We can then make statements about non-
stationary queueing networks.

2. Preliminaries

For any countable set E, consider its counting measure. This is a o-finite
measure on all subsets of E. We then set the measure of each subset of E to be
its cardinality. For example, each element of E has measure 1. By a trivial use
of the Radon-Nikodym theorem, every other o-finite signed measure on the
power set of E can be uniquely represented by an function integrated against
the counting measure. In particular, if we define an [;-norm with respect to the
counting measure on these functions, then [,(E), the functions on E having a
finite [;-norm, represent every possible bounded o-finite signed measure. The
cone of positive functions in [;(E) with l;-norm equal to unity, represent all of
the o-finite probability measures on E. Given this equivalence, the Kol-
mogorov forwards equations governing a process of measures on E that evolve
in time can be written as

d
@ p()=p(HA

where p(t) belongs to the Banach space [,(E) and A is a linear operator that
acts on [,(E). We shall refer to A as the generator of the Markov process. For
most queueing models, it will be a bounded operator.

We now distinguish some special elements of I,(E). For any element o of E,
let e, be the indicator function for the singleton set {0} where

1, T=0

e-(7) = {0, T# 0.

It is clear that e, belongs to [;(E). Moreover, {e,}, g is a natural basis for l,(E)
since

f=2 f©)e,

ocE
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and f=0 if and only if f(¢) =0 for all ¢ in E. The cone generated by the e,
coincides with the set of positive vectors in [;(E). Any operator A on [,(E) is
said to be positive if it maps the positive cone into itself. From this notion of
positivity, we define two important partial ordering relations. For any f and g
in [,(E), we say that f=g whenever f—g is positive. Similarly, for any two
operators A and B on [,(E), say that A= B if A— B is positive.

For the sake of completeness, we also define I.(E), the set of bounded
functions on E. Any element g belonging to l.(E) can be written as

g= 2 g0,

ceE
where |gl. =sup,.g|g(ag)| <. Of course I(E) is dual to [;(E), so any g in
I(E) acts on any f in [,(E) as

f.g= 2 flo)g(a).

oeE
For any bounded operator A on [;(E), we have f A belonging to [;(E) and Ag
belonging to L.(E).

We define 1 to be a special I (E)-vector where

1= e,.

oecE

A crucial property for positive I,(E)-vectors is that for f=0, we have

|f|1=f-1~

Moreover, for positive bounded operators A, if |Al; is the norm induced on A
through [;(E), then

|Al; =|A1l..

We now characterize all bounded operators that serve as generators for
Markov processes.

Proposition 2.1. For a bounded operator A on l,(E), the following statements
are equivalent:

(1) A is the generator for a Markov process on E.

(2) A1=0 and A+|A|,I=0.

Proof.

(1)=(2). For all probability distributions p(0), we have that p(0) exp (tA) is
a probability distribution too. From this it follows that p(0)exp (tA)1=
p(0).1=1, hence exp (tA)1=1. If we differentiate with respect to ¢t and set t
equal to 0, then we get A1=0.

Let o and 7 be two distinct elements in E, then e, . e, =0. If we set p(0) =e,,
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then e, exp (tA)=0 and so

€ tA)—I
P 2 Vi SR

t t

exp (tA)
——e

T

IV

0

and as t goes to 0, we get e, Ae, =0. Any diagonal term has the form e, Ae,.
Since le, Ae,|=|A|;, we have A+|A|,T=0.

(2)=>(1). We want to show that for p(0) ranging over all probability dis-
tributions, we have |p(0) exp (tA)|; =1 and p(0) exp (tA)=0. Since exp (tA) =
exp (t(A+|A|T)) . e7*=0, then p(0) exp (tA) is positive, hence

|p(0) exp (tA)|; = p(0) exp (tA) .1
=p(0).1
=1.

The last step follows from the power-series expansion of exp (tA) and the fact
that A1=0.

3. The M/M/1 queue

The usual formulation of this system goes as follows. Let Q(t) be the
queue-length process. The state space E is the set of non-negative integers.
The arrivals form a Poisson process with rate A and each customer receives
service for a duration exponentially distributed with rate w. If p,(t)=
Pr{Q(t) = n}, then the p,(t)’s solve

G.1) £ polt) = 010~ Apo(0)
and for n=1
(32) 2 ()= Apya (O P (O~ (A )P 0

Heuristically, we can interpret these equations as flows in and out of states. For
example, in (3.1) and (3.2), (d/dt)p,(t) is to be the rate of ‘flow’ through the
state {Q(t) = n} representing n customers in the system. It then follows that
since Ap,_;(t) is a positive quantity, it is a flow into state {Q(t) = n} from state
{Q(t) = n—1} via an arrival that occurs at rate A. A similar interpretation exists
for up,.1(t). The quantity —(A + w)p, () is negative, so this represents the rate
of flow out of the state {Q(t) = n}. This can be due to an arrival at rate A, or a
service at rate w. Since there must always be a non-negative number of
customers, the subsequent modifications on the flows are made in (3.1). While
these birth and death equations are manageable for the M/M/1 system, they
can become quite tedious for more complex systems, especially when one deals
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with the ‘boundary behavior’ that makes (3.1) differ in form from (3.2). We
now rewrite the equations from the point of view of the previous section.
Recall that the state space E is the set of non-negative integers. Since the
underlying structure of E is totally ordered, we shall simply think of [,(E) as
being a space of sequences and refer to it as l,. Since p(t) belongs to [;, we can
write it either as

p(t)= i pa(tle,
n=0

or as p(t) =[po(t), p:(t), p2(1), . . .]. Let R be the right-shift operator on [; where
e,R=e,. ., for all n=0. Let L be the left-shift operator where e,L=e,_; for
n=1 and ¢, L=0. These operators can be seen as fundamental, primitive
operators that correspond to the arrival and departure of customers. In fact, we
can write A for M/M/1 as

(3.3 A=AR+uL—AI—pLR

where I is the identity operator. There is a one-to-one correspondence
between the various states {Q(t)=n} and the unit vectors e,. Given the
properties of R and L, we see that (3.3) encodes all of the birth and death
equations.

For the M/M/1 queue, we shall present the two main themes that we shall
carry over to more complex systems. First, the verification of the steady-state
distribution. We know that the equilibrium distribution for the M/M/1 queue
(when it exists) is the geometric distribution or

lim Pr {Qt)=n}=(1-p)p"

where p <1. Now suppose that we encode this distribution as an l;-vector. Let
g=(1—-p).Yr_op"e, be this representation. We can also write it out as

g=1-p)1,p,p% -]

The key algebraic feature g has, is that it is an eigenvector of L, the left-shift
operator, and gL = pg. If we substitute this result into gA, we get

gA=g[AR+uL—AI—uLR]=g[AR+ upI —AI—upR].

We purposely left p unspecified, so we may derive from setting gA =0 that p
must equal A/u.

The second theme we shall illustrate here is that of stochastic ordering.
Consider the set of all non-negative integer-valued random variables. We
define a partial ordering on them as follows. For any such X and Y, we say that
X=,Y if

Pr{X=n}=Pr{Y=n}
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for all positive integers n. X is said to be stochastically dominated by Y. For
two M/M/1 queue-length processes Q;(t) and Q,(t), we can give a simple
criterion for stochastic dominance in terms of the arrival and service rates A,
1, Ay, and p,. A special case of a result stated in Kirstein, Franken and Stoyan
[3] says that Q,(t) =, Q,(t) for all t=0 if Q,(0) =, Q5(0), A;=X,, and ;= .
We shall prove this result by operator techniques.

First, we define an operator K, where for all e, we have

(3.4 e, K= i e

m=0
K is a positive operator and we can say formally that
K=I+L+L*+---=(I-L)".

If p, belonging to l,, represents the distribution for some random variable X it
is clear by (3.4) that

pK =) Pr{X=nle,.
n=0
It should be noted that if E(X)<, then |pK], = E(X)+1. So all distribution
vectors with a finite mean belong to the domain of K. Finally, if ¢ represents
the distribution for a random variable Y, then

X=,Y iff pK=¢K.

Lemma 3.1. Let Qy(t) and Q,(t) be M/M/1 queue-length processes with the
same arrival and service rates, A and . If Q;(0) =, Q,(0), then Q,(t) =, Q,(t)
for all t=0.

Proof. Let p represent the distribution of Q;(0), and similarly g for Q,(0).
At time ¢, the distributions for Q;(t) and Q,(t) are respectively p . exp (At) and
q.exp (At), where A=AR+uL—AI—uLR. We wish to show that pK =¢qK
implies that p exp (tA)K=gq exp (tA)K. Since K~!'=(I—L), it is sufficient to
show that K 'exp (tA)K =exp (tK 'AK)=0. Moreover, by arguments in
Section 2, we need only show that there is a positive real number «, such that
K 'AK+aI=0.

Using the ‘power series’ representation of K, we can readily show that
RK=K-+R and LK =K —I. Therefore,

AK=[AR+pL—\I-uLR]K
=AMK+R)+uLK~\AK—pu(LK+LR)
—AR-uLR
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and finally
K 'AK=(I-L)YAR—uLR)
=AR+uL’R— (A +u)LR
=—-(A+p)I
so K 'AK+(A+u)I=0 and this completes the proof.

A Markov process on the positive integers with the above property is said to
be monotone. This is a crucial property for comparing different processes.

Proposition 3.2. Let Q;(t) (i=1,2) be two M/M/1 queues with arrival and
service rates A; and p; respectively (i=1,2). If A{=A,, w1=u,, and
Q,(0) =, Q,(0), then Q,(t) =, Q(1).

Proof. Let A;=AMR+p,L—MI— LR and take p; to be the vector rep-
resentation of the distribution for Q;(0). We want to show that

piexp (tA)K =p, exp (tA)K.

By the monotonicity of Q(t), p, exp (tA;)K = p, exp (tA)K, so it is sufficient
to show that

exp (tA)K =exp (tA))K.

If we apply ‘d/ds’ to exp (sA,)exp ((t—s)A,), we then get exp (sA,)
(A,—A)) exp ((t—s)A,). Integrating gives us

(exp (tA)—exp (tA)K

= [ exp (sA(Aa— A exp (-5 ADK ds
0

= Jt exp (sA,)(A,— ADK . K 'exp (t—s)A)K ds.

0

Now, (A,—A)K=(,—A;)R+(w;—um)LR is a positive operator by hypo-
thesis. K~ exp ((t—s)A,)K is positive by the monotonicity of Q,(t). Finally,
exp (s A,) is positive, being the semigroup for a Markov process. We then have
exp (tA)K=Zexp (tA)K.

For future reference, we note the above proof required that A,K= A,;K and
only that Q,(t) (or Q,(t)) be a monotone process.

The author in Massey [4] used this operator-theoretic approach to do an
asymptotic analysis of M(¢t)/M(¢t)/1, the time-dependent M/M/1 queue.



184 WILLIAM A. MASSEY

4. The (M/M/1)N network

We now wish to construct a network of M/M/1 queues as follows. Given N
nodes, let the ith node be an M/M/1 queue with Poisson arrival rate A; and
exponential service rate p;. We ‘hook up’ this network by an N X N switching
matrix P that is substochastic. A customer having finished service at the ith
node, arrives at the jth node with probability p;. With probability g; =
1 —Zﬁil pi» the customer may decide to leave the total system altogether. We
shall assume that p; =0 for all i. This is the Jackson network which we shall
denote as (M/M/1).

If Q,(t) is the queue-length process for the ith node, then (Q;(t),- - -,
Qn(t)) is a Markov process. Its state space E equals the set of N-tuples
(ny, - - -, ny) where each n; ranges over the non-negative integers. Since we
have a natural way of decomposing E into the N-fold Cartesian product of the
non-negative integers, we want to do a similar decomposition for l,(E). This
can be accomplished through the use of tensor products.

Given two sets E and D, let EXD be their Cartesian product. The set
{ewr | 0 €E,Te D} is a basis for I,(Ex D). Recall however that e, is the
indicator function for the singleton set {(o, 7)}: it then follows that

e(o’,‘r)((‘i., i:) =€y (&) . e‘r(;‘:)'
The latter expression has the additional algebraic structure of being linear in e,
and e,. We will denote it as [e, ®e.](, 7). So in a natural way, we can make
1,(E x D) isomorphic to [;(E) ® l;(D). For any f in [;(E) and g in [,(D), define
f® g to be in [,(E)® I;(D) and equal to
f®g=) ) flo)g(n)e, Pe..

oceEreD
Furthermore, let the l;-norm on [ (E)® [;(D) be the same as that on
I,(Ex D). Consequently |f®g|,=|fl,|gl;, for all given f and g. We list the
bilinearity properties that f® g has:
(f1+f2)®8=f1®8+f2®8
f®g+g)=fOg+fQg
(af)@g=fR(ag)=a(f®g).

The {e, ® e,}ocrrep are a basis for 1,(E) ® I;(D), so to define an operator on
this space it is sufficient to define a linear operator on these basis elements. For
example, if A is an operator on [;(E) and B is one on l;(D), then A® B is
defined on [,(E) ® l,(D) by setting

(e, Qe )[A®B]=e,ARQe.B

for each basis element.
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It is clear how the above constructions can be extended to a tensoring of N
spaces together where N exceeds 2. We then see that given the state space E
for' (M/M/1)N gives us an isomorphism between I,(E) and 1{V, which is [
tensored with itself N times. For the M/M/1 queue, R and L were natural
operators to define on [;. Now we shall use them to define our basic, primitive

operators for (M/M/1)Y. We define R, and L, for i=1,- - -, N such that
R=I® - -QR®---QI (ith place)
L=I® --QL®---QI (ithplace).

These operators now enable us to construct the generator A for the (M/M/1)N
network

N N
4.1) A= 21 [)\iRi +wig L + ‘Zl i Li R — AT — MiLiRi] .

i= j=

Paralleling the interplay between the primitive operators and the ‘flows’ in

the birth and death equations for the M/M/1 queue, we can verify that this is
the correct generator. A state (nq, - -, ny) is represented by the basis vector
e, ® - -Qe,,. For simplicity, let i=1 and j=N. A customer may arrive to
node 1 with arrival rate A;, adding a customer to the queue. This corresponds
to

(€, ® - Qe, )R =€,.18 - Qe,,.

If a customer exists at the first node then service will occur with rate p,, and
with probability q; the customer will leave the entire network. We encode this
as

(€, ® - -Qe,)Li=€,_ 19 - Qe,,

if n; =1, otherwise we get the zero vector. Finally, this departing customer may
instead decide with probability p,, to transfer and enter the Nth node. This is
interpreted as

(em ®--- ®enN)L1RN =€n,—1 ®--- ®enN+1,

again if n;=1. A similar description can be given for the negative terms.

Given this formulation, we can give a purely algebraic proof of Jackson’s
theorem, assuming only that the steady-state distribution has a product form. If
we let g;, belonging to l;, represent the marginal equilibrium distribution for
Q,(t), then a product-form solution means that

(é gi>A =0.

i=1

The rank-N tensor @!', g; has the property that summing on all indices except
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for the ith one, gives back the ith vector in the original tensor product, up to a
scalar. Moreover, the primitive operators L; and R; preserve the tensor-
product form when applied to @i, g,. Consequently, if we sum on all but the
ith index of the rank-N tensor (&, g;)A, for some positive scalars & and m;
we have

g(&R+nL—&1—n,LR)=0.

Hence g; must be the steady-state distribution for an M/M/1 queue, so there is
some 0<p; <1 such that g,L=p;g; for each i. From this, it follows that for
each j,

N N
(g 8i>Li =P ig &
Let 6, = p,u,;; substituting into (XN, g;)A gives

N N N N
(% 8i)A= (g gi) Z [)\iRi +wipqg I + Z oD R; _)\iI_MiPiRi]

i=1 ji=1
N N N
= (® gi) Z [(Ai + Z oipii_0i>Ri +(6,g; _/\i)l]-
i=1 /i3 i=1

If we want (N, g,)A=0, then we must have for each i, 6, <p;
N
6,= 2 Opi+A
i=1

and from this follows Y ; A; =Yiv; 6,q.

Aside from reproving a well-known result in a less ad hoc manner, we can
put this machinery to work to prove new results. In Massey [5], the author
derived bounds for the transient behavior of the (M/M/1)N network in terms
of the known transient behavior for the M/M/1 queue. For a given (M/M/1)N
network, let (X;(t), - - -, Xn(t)) be a collection of independent M/M/1 queue-
length processes with X;(0) = Q;(0), arrival rate A, + Y, u;p; and service rate
W;, then for all t=0

PrO®Zm, -, OnOZml =[] Pr(X(0Zn)

i=1

for all non-negative integers nq, - - -, ny. Moreover, if Y(t) is an M/M/1
queue-length process with arrival rate Yi; A; and service rate Y., wqg;, then
for all t=0,

4.2) Pr {Z Q= n} =Pr{Y()=n}

for all non-negative integers n. We shall briefly rederive the latter of these two
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results. Doing so allows us to introduce an aggregation operator § that maps
I™ into I, where if m =Y, n,, we have

()s-

The distribution for ¥;_; Q;(t) can then be represented by p(0) exp (tA)S. S is
a positive operator, and it has special algebraic properties RS =S8R and
LS=SL. Now let B=A'R+u'L—u'LR be the generator for Y(t), where
A=Y, A and p' =Y, wq. Inequality (4.2) is then equivalent to

p(0) exp (tA)SK = p(0)S exp (tB)K.
So it is sufficient to show that
S exp (tB)K =exp (tA)SK.

Using the same argument as in Proposition 3.2, we differentiate exp (s A)S
exp ((t—s)B)K to deduce that

exp (tA)SK — S exp (tB)K

= Jt exp (sA)(AS—SB) exp ((t—s)B)K ds

= Jt exp (sA)(AS—SB)K . K ' exp ((t—s)B)K ds.

Y(t) is monotone, so K ' exp ((t—s)B)K=0. So we need only show that
ASK = SBK. Using the algebraic properties of § and K gives

N N
ASK = Z [/\iRi +wq, L + Z wip; L R; _)\il_MiLiRi]SK

i=1 i=

[Asn+u.q,LS+Z kb LSR-AS~ 1, LSR|K

1=

=L
= 2 AS(R-D)+ wq LS - R)K
Z [\SR— 1., LSR]

= S[A'R- p'LR]
=SBK
and this proves the result.
In Section 6, we shall generalize these results for (M€/M€/1//GD)N net-

works. The product-form equilibrium distribution carries over to a special
subclass of these networks first derived by Kelly [2]. However, the bounds for
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estimating the transient behavior can be derived for any (M€/M€/1//GD)N
network.

5. The MS/M€/1//GD queue

We now wish to construct a very general single-server queue that allows for
different classes of customer. Let C be a finite set of ‘tags’, one for each class.
Representative elements of C will be denoted by a or B. For the a-class
customers, A, is their Poisson arrival rate and p, is their exponential service
rate. With each new service, one must be aware of the class of the customer to
be served. The state space E must list all possible configurations for queueing
lines. By this we mean the number of customers in line as well as the class of
each customer in line. Moreover, when we insert customers in line or delete
them, we do so by a discipline. For example, suppose we want to delete a
customer from a configuration o belonging to E. Let |o| be the number of
customers in line. If the first position is the head of the line, we shall delete a
customer in the ith position with probability y;(o) where i=1, - - -, |o|. So for
each o in E we have Y, ¢;(o) = 1. It is this family of probability distributions
that we shall call a deletion discipline. We shall refer to this family as ¥ which
stands for the set {{;(c)|ce Eand i=1,- - -,|o|}.

We shall distinguish three special disciplines:

(i) ¥g deletes customers at the head of the line where

1, i=1
Y, (o) = .
0, otherwise,
(ii) ¥, deletes customers at the end of the line, and
(o) {1’ =l
i\0) =
0, otherwise.

(iii) Wp deletes any customer in line with uniform probability, hence (o) =
1/|a| for |a| #0.
Similarly, we can define an insertion discipline, which we denote by ®, in the
same fashion as ¥. However, when we insert an a-class customer into a
configuration o, we regard (o, a) as the new configuration and let i in ¢;(o, )
range from 1 to |o|+ 1. We say that ®=V¥ if 7 = (0, a) and ¢;(o, a) = Y;(7) for
all o, o, and i. Thus ®, where @ =V, is the discipline for inserting customers
at the head of line. We then define ®; and ®; in a similar fashion.

In Kendall notation, we let GD refer to a general discipline. We shall define
this to be the pair (®, ¥), where ® and ¥ are arbitrary. In the sense that
6D = (P, ¥), we also have Firo=(®;, ¥¢), LIFO= (P, ¥, ), and ps= (P, ¥p)
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the processor-sharing discipline. Restricting the disciplines to being load de-
pendent, that is ¢;(c, o) = ¢;(lo|+1) and (o) = Y;(|o|), we then have the type
of disciplines as defined in Kelly [2]. Notice that the rIFo, LIFO, and Ps
disciplines are all of this type.

To describe a service more complicated than a once only exponential holding
time, we add to this model the notion of internal switching. After a customer of
class & completes service, the subsequent departure may not be allowed. With
probability p,s, the customer merely remains in his same spot in line and is
transformed into a $ class customer, and ready to resume service as such. The
collection of p,g’s for & and B in C is said to be a |C|x|C| switching matrix. It
is a substochastic one, so with probability q, =1—Y gcc Pag, @ class a customer
will be allowed to leave the queue. For simplicity, we assume that p,, =0 for
all a.

Consider a riFo discipline with C={a, B}, two elements. Let A, be
arbitrary, and set Ag =0, Wy =g =W, Paa = Ppg =P« =0, With p,g =1. The
switching matrix tells us that every class a customer after ending service with
rate u, stays in the server to become a class 8 customer with the same service
requirement. The class 8 customer upon completion of service, is told to leave.
If we treat the a, B8 pair as one customer, then this models an M/E,/1//FIFO
system. E, is the distribution for the sum of two i.i.d. exponential random
variables. Now let u, # ug and Poo = Dgg = Pag = Ppe. = 0. Since we can superim-
pose independent Poisson processes, this models an M/H,/1//FIFO system.
The arrival rate is A, +Ag and the service distribution Hj, is a convex combi-
nation of two independent exponential distributions where with

- (or Ag
Ao TAg Ao T Ag

probability ), a customer receives service with mean

1 1 . .. . . oo
— |or —, respectively ). In a similar fashion, we can use internal switching to
(22 “’B

model any phase-type service distribution.

We now wish to encode this queueing system into operator notation. First,
we must impose some algebraic structure on E. For the M/M/1 queue, E was
the non-negative integers. We made transitions by adding or subtracting one
customer. We generalize this for M€/M€/1//GD by letting E = S, the free
non-abelian semigroup with identity element, generated on the set C. If C is a
singleton set, then Sc is isomorphic to the non-negative integers and our model
reduces to the M/M/1 queue. Let @ denote the semigroup operation and let O
be the identity element. Every element o of E can then be written as
;P - -Ba,. It is clear that a;P---Pa, encodes the state of having n
customers in line with the ith customer being of the «; class.

Our forwards equation for this queueing model exists then on the Banach
space [;(S¢). To induce an algebraic structure on 1,(Sc), we modify the natural
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map from o in Sc to €, in 1;(Sc). We modify it to be a semigroup homomor-
phism where

€y Do, = €, Q" - Re,,

and ® is the tensor product operation. Thus there is a one-to-one correspon-
dence between the basis vectors for strings of length n and the basis vectors for
the space of |C|-dimensional tensors of rank n. Therefore 1,(S¢) is isomorphic
to F(1,(C)), the Fock space of 1,(C) which is the direct sum of the spaces of
|C|-dimensional tensors of all ranks. This includes the scalars, where we
associate e, with the scalar 1. %(1,(C)) is also referred to as the tensor algebra
of 1;(C). An element of %(I,(C)) can then be thought of as an infinite-
dimensional vector, where the nth component is a |C|-dimensional tensor of
rank n. In this manner, we can still define the notions of right- and left-shift
operators on F(I,(C)).

We define a generalized right-shift operator as follows. Given a class a, and
an insertion discipline ®, we have

(‘2 em>R(a, @)= g & (aeaa)(cg_ eai)®ea® (® ea,_)

j <i j=i

where 0 =0,;® - -@Pa,. Just as R maps e, to e,.,, R(a, ) maps rank n
tensors into rank n+1 tensors. Similarly, given a class «, and a deletion
discipline ¥, we define a generalized left-shift operator L(e, W) where

(& eo)ti@®)= ¥ tilen@) B,

and o =a;P- - -@Pa,. Recall that e,(q;) is a scalar, equaling 1 if «a =¢; and 0
otherwise. Finally, we must introduce a modification operator M(e, B3, ¥), that
deletes an a-class customer (if possible) via ¥ and then substitutes a -class
customer in the same place. In other words

(é e,,{>M(a, B, W)=Y Yi(o)e, (ai)(® eai)®e,3 ® (® ea].) .
i=1 i=1 j<<i i>i

We can now construct the generator A for an M€/M€/1//GD system:
(5.1)

A=) [Aa R(a, D)+ podo Llc, W)+ BZC KaDogM(ct, B, W) = A I~ p Mo, W)]

acC

where M(a, ¥) = M(o, a, V).
Let T belong to F(I,(C)). We say that I' represents a tensor geometric
distribution on S, if there exists a positive g in I;(C) with |g|; <1 such that

= (1_Ig‘l)[19 £ g®g’ o ]
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The tensor geometric distribution is the steady-state distribution for a special
class of M€/M€/1//GD queues, as we shall soon see.

We say that ¥ (or @) is an abelian discipline if for all strings of length n and
for all permutations 7+ on n objects we have

llfi(a1®' : '®an)= d’i(a‘rr(l)®' : .®a‘rr(n))-

Notice that load-dependent disciplines are a special case of abelian disciplines.
Disciplines of this type have more than just a theoretical interest. We shall
illustrate here an example of a non-trivial abelian discipline as discussed in
Fayolle, Iasnogorodski and Mitrani [1].

For each class «, if we assign a positive weight g(a)>0, then we can define
the following service discipline:

(o)
U ® - Bay)=—
¢ o gc g(a) |ol,

where |o|, is the number of occurrences of @ in o =a;®- - -Pa,. Notice that
if all of the g(a)’s are the same, then ¥ reduces to ¥,. ¥ can then be thought
of as a weighted processor-sharing service discipline.

We now give an example of a non-abelian service discipline. Suppose that C
is a totally ordered finite set. In other words, for all @ and B in C, we have
a = or B=a. Now define ¥ as

1, i=inf{jloyZ e fork=1, -, n}

0, otherwise.

Y (D - '@an)z{

This models a priority service discipline, where service is given to the first in
line of the highest-priority class in the queue. With minor modifications, we can
model preemptive and non-preemptive priority systems equally well. This
illustrates the main purpose of defining disciplines in such generality. Results
that hold for any M€/M€/1//GD system, then hold for any discipline that is
FIFO, LIFO, PS, Or even priority scheduling.

Proposition 5.1. Let T be a tensor geometric distribution, and let ¥ be an
abelian discipline, then

(1) T'. L(e, ¥) = g(a)T,

2) T'.M(a,¥)=g(a)T . R(ca, ) where =Y.
Moreover, if ¥ is merely a load-dependent discipline, then

3) I'.M(a, B, V)= g(a)T' . R(B, D) where D=V,

@) YoccT e M(a, V) is independent of W.

Proof. Given g, a |C|-dimensional vector, let g™ be a rank-n tensor equal to
g tensored with itself n times. To prove (1), it is sufficient to show that
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g" " PL(a, ¥) = g(a)g™ hence

n+1 \

g Lo, ¥) = > (ﬁ g(da)) (‘g em)L(a, )

(01, 04 )EC™ \i=1

= Z (H g(al)> nzl llli(ala T, an+1)eot(ai) g eak

(@1, "y y€C™TE Ni=1

-y ([T ee)uen apete) De,
k#j

i=1 (a0, 0)EC™! Ni=1

=_§:lg(°‘)( 2 (Hg(a;))tlf,-(al,'",an+1,a)'§.ea,‘

BRI !
@ T ([T e@)(Z wlen - ) § e

=g(a).g™.

We henceforth abuse notation by setting R(a, ¥) equal to R(a, ®) provided
® =", and similarly defining M(c, 8, ®) or L(a, ®). To prove (2), we need only
show the result below.

2" PM(e, V)
-3 ([Tew) T e o @)(@ ) 0e.8(® )

(o1, 0 0)EC™H Ni=1 k>j

=gla) Y (1:1 g(ai)) :‘g lag, -, ay, a)(k% e,,k) Re, ® (® eak>

(o, ,a,)EC™ N k=j

~s@| T (Ms@)®e. R

(oty,*",0)EC™ Ni=1

=g(a)g™R(c, V).

When V¥ is merely load dependent, then the ¢j;’s have no class dependence. We
can then use the above argument to show that g"*"M(a, B, ¥)=
g(a)g™R(B, ¥). Moreover,

2 " M(a, W)

aeC

n+1 n+1 n+1
- % (Te@) T w40 ® e,
(ay, 06 41)EC™H Ni=1 j=1 k=1
=g(n+l)
and so we are done.

Theorem 5.2. For an M€/MC€/1//GD queue, take A to be its generator and let
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. (V)
T represent a tensor geometric distribution generated by g=Y . .c — e., where the

oL

0,’s are to be determined. Suppose that one of the following conditions holds:
(1) ® and ¥ are abelian disciplines with &=V and p,z =0 for all « and
B in C.
(2) ® and ¥ are load-dependent disciplines with ®=V¥.
If a steady-state distribution for A exists, then T A=0 where the 0(a)’s solve

(5.2) O =Aat 2, OpDpa
BeC
and
Y Oa .
aeC Mo

Furthermore, suppose instead of conditions (1) or (2), we have:
(3) ® and ¥ are load-dependent with ®+V.
Then T A=0 when we constrain the w,’s such that there exists some constant k

where for all a, ., =—;)—°‘. k and the 6,’s solve (5.2).

o

Proof. Using the results of Proposition 5.1 and hypothesis (1) or (2) gives us
ra=r. ) [/\ak(a, D)+ 60,q. 1+ Y. 6,D0 s R(B, ®)—A I —6,R(e, ¢)]
BeC

aeC

=T. ) [()\a + Bgc 06Dp.c — 0a>R(a, D)+ (0.9, — )\a)l].

aeC

From this, we derive (5.2) to have I'A =0, and it follows from (5.2) that
Zaec /\a :Zaec eaqa'

Given hypothesis (3), we use properties (3) and (4) of Proposition 5.1 to
show that

r.Y A\R®=T.Y L;’LﬁM(a,cp)

aecC aeC (1

=K. Z . Mo, ®)

aeC

=K Z I'.M(o, V)

aeC

=T. Y AR ).
aeC
This substitution then gives us a generator from an MS/M€/1//GD queue
where the insertion and deletion disciplines are equivalent to ¥. From the
previous arguments, it is clear that TA=0.
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The above results show that we can easily characterize the steady-state
distribution for a special subclass of M€/M€/1//GD queues. They correspond
to the quasi-reversible systems that are discussed in Kelly [2]. We now proceed
to derive stochastic bounds that hold for all M€/M€/1//GD systems. As we
did for the (M/M/1)™ network, we must construct an appropriate § operator.

Proposition 5.3. Define 8 as a linear map from %(1,(C)) to |, where
(@ eai>S =e,
i=1

we then have for all classes a and disciplines ®:
(1) R(c, )S=SR,
(2) YaccLla, ®)S=SL,
3) M(w, B, ®)S =L(a, ®)SR.

Proof. 1t is sufficient to prove these statements for an arbitrary @7, e, for
example

(é eai)R(a, D)S

:tg: di(ay, -, ay, a)(@ ea,_) Be,® (@ eai>S

J<i j=i
n+1

z d’i(al, T, Oy, a)en+l
i=1

=é€nt1
= (® eai>SR.
i=1

Similar proofs hold for Equations (2) and (3).

Theorem 5.4. For a given M€[MC€/1//GD system, let Q(t) be its queue-length
process. Let X(t) and Y(t) be M/M/1 queue-length processes with both having
arrival rate Y,.cA,, and the service rate for each one is min,.c p.q, and
max,.c tade respectively. If Q(0)= X(0)= Y(0), then

X(t) =z, Q) 2, Y(1)
for all time t=0.
PrOOf. Let Bi =A,R+ I.L,L‘—A,I_MILR where A1=A2=Zaec Acn w=
ming cc Moo, and o =MaX,cc ol X(t) and Y(t) are monotone processes

with B, the generator for X(t), and B, the generator for Y(¢). By an argument
similar to Theorem 4, it is sufficient to show that

SB,K=ASK=SB,K.
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By the above proposition, and using the properties of K, we get

ASK = Z [A(a)SR+ oo L(a, ¥)S

aeC

+ Z I“'apaBL(a9 \I,)SR - /\as - IJraL(a, \I’)SR]K
BeC

Y AS(R-I)+ p.q.L(a, ¥)S(I - R)IK

aeC

Y [ASR—p.q.L(a, ¥)SR].

aeC

Recall that BK=AR— ;LR and Y, .cL(a, ¥)S=SL. It is then a simple
matter to show that SB, K= ASK=SB,K.

Notice that we could have chosen initial distributions such that
X(0) =, Q(0) =, Y(0), and the theorem would still hold. We merely chose
distributions that would give the closest fit. If we applied the above theorem to
the previous example of an M/H,/1 queue, then it would have an M/M/1
‘upper bound’ with arrival rate A, +Az and service rate min (u,, pg). The
‘lower bound’ would have the same arrival rate, but have service rate

max (“’aa FLB)~

6. The (MS/M“/1//GD)N network

The generators for the (M/M/1)Y network (4.1) and the MS/M€/1//GD
queue (5.1) are very much alike in form. This illustrates the similarities
between the notions of classes and nodes. In fact, they differ in only one way.
There is no sense of order between two customers at different nodes for the
(M/M/1)N network. On the other hand, the complexities of disciplines are
introduced for the M€/M€/1//GD queue to handle this notion of ordering.
Algebraically, this is the difference between E being a free non-abelian group
on C and being a free abelian group. If it is the latter, then we have a
semigroup structure that makes E isomorphic to |C|-tuples of non-negative
integers. Setting |C|=N gives us then the state space for the (M/M/1)N
network.

We shall now proceed to construct the generator for the (M€/M€/1//GD)N
network, thereby defining the system. It is essentially an (M/M/1)N network
modified so that each node is an M€/M€/1//GD queue. Let C be the set of
classes for the entire network. We shall decompose C into N disjoint sets D,
through Dy or C= UL, D, with D,ND; = & for i#j. Now let E=®}, Sp,
where we take the direct product of the Sp,’s as semigroups. This is equivalent
to generating a semigroup on C with additional commutation relations. We
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want D; to tag the classes that enter and exist only in the ith node. This is
modelled by permitting any element of D; to commute with all of the elements
of C except the other members of D,. If o; is a string belonging to Sp, then
o,D- - Doy is an element of E. This state space is then rich enough to
describe an N-node network with various classes of customers served at each
node.

It is clear from our previous construction that probability distributions on E
are represented by vectors belonging to the space

L(E)= ll(ié sDi>s Qé F(1,(Dy)).

Thus we have a tensor product of Fock spaces. This makes it easy to define
operators on [;(E). Let R;(a, ®@;), with « belonging to D,, be the operator that
corresponds to inserting an a-class customer into the ith node according to the
discipline ®;,. We can construct such an R(a, ®;) to act on %(l,(D;)). For
L(E) =&, #(1,(D;)), we define R;(a, ;) as

Ri(a, q),) =I ® R ®R(a, ®l)® M ®I (ith p]ace).

In a similar fashion, we define L;(a, ¥;) and M(c, B,¥;) for all « and B
belonging to D.,.

Just as for the MS/M€/1//GD queue, A, and u, are, respectively, the
arrival and service rates for the a-class customers. Moreover, {P.g}occgec 18
the |C|x|C| switching matrix that is substochastic s0 q, =1—Yzcc Pog- If @ and
B both belong to D,, then p,z describes the probability of an internal switch in
node i, from class a to 8. So when « is in D, and B is in D, for i#j, then p,g
describes the probability of an external switch from node i to node j as well as
a change of class. Finally, if (®;, ¥;) is the insertion—deletion discipline for the
ith node, then A equals

N
A=2 L [AaRi(a, P+ thotolls (@, W)+ L, tapugMiles B, V)

©6.1) N
+ Z Z l-"apaBLi(as q’i)Rj(Bs q)j)_ )\aI— IJ'aM (a, q’l)]

j#i BeD;

We now consider the subclass of (M€/M€/1//GD)N networks which admit a
steady distribution that is a tensor product of tensor geometric distributions.
First, start with @i, I'; where each T'; belongs to %(Sp,) and (R, T;)A=0.
By the same arguments as for the (M/M/1)N system, we have for each T}

.Y [&R(a ®)+n.Lia, ¥,)— &1 —nM(a, ¥,)]=0

aeD;
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N
for some collection of positive scalars &, and m,. So whenever @ I; is the
i=1

steady-state distribution for an (M€/M€/1//GD)" system, then each T} is the
steady-state distribution for some associated MS/M€/1//GD system. This
motivates the following theorem.

Theorem 6.1. Let T; be a tensor geometric distribution belonging to %(1,(D;))

generated by g; = Zae,_-, < e.. Suppose that for each node i, one of the following

conditions holds:

(1) @, and ¥, are abelian disciplines with ®;, =¥, and p,z =0 for all o and B
in D,.

(2) ®; and V; are load-dependent disciplines with ®; =V,

If the steady-state distribution exists, then (&L, T;)A =0, where the 6,’s solve

(6.2) 60: = Aa + Z OBpBa

BeC

6,
and Y ,.p,—<1 for each i.
I

o

Proof. Using the results of Proposition 5, hypothesis (1) or (2), and the
properties of tensor products gives us

(é Fi) (®I‘>Z > [)\aRi(a,d)i)+0aan

1 i=1aeD;

Z 0.Das R, (B, ;) — Ao — 6R(a,<1>)]

BeD;

(&_5 )2 T [(+ T bRl @) 0= r]

i=1aeD;

T Mz

N
and as in the proof of Theorem 5.2, to have (® I‘,-)A =0 requires that the 6,’s

i=1

satisfy (6.2). From this follows Y, cc Ay = Yacc 0ala-

Corollary 6.2. If in addition to condition (1) or (2) above, some nodes satisfy
(3) ®; and ¥, are load-dependent with ®;+W¥;.

N
Then, we still have (Q T';)A =0, if whenever the ith node satisfies condition (3),
i=1
0,
there is a constant k; such that for all a in D,, p, =—————— . k;, and the

6,— 6
0,’s still solve (6.2). BezDi ePge
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Proof. Tt follows from Proposition 5.1 that for all j the quantity (QN,T;)
. Ywen,Mi(a, ¥;) is independent of ;. If the ith node satisfies condition (3),
then we can replace R;(a, V;) by R;(a, ®;) as we did the opposite in the proof
of Theorem 5.2. The rest of the proof would follow the same steps as above.
Knowing the 6,’s in advance, we would then get 0.

The special class of (MS/M€/1//GD)N networks characterized above, en-
compass the product-form networks as discussed in Kelly [2].

We now proceed to derive the main theorem of this paper, which derives
stochastic bounds for any (MS/M€/1//GD)N network, thereby estimating its
transient behavior by that of M/MJ1 queues. We first define two aggregation
operators Sy and S. Sy maps @, F(1,(D,)) to I’ where

(6,8 - Ve, )=€,,® - Qey,

with o; being an arbitrary string in Sp, and |o;| is its length. § on the other
hand, maps @, #(I,(D;)) into 1, where

(s, - Ve, )S =€+ tionl

we now list the key properties of S4 and S. The method of proof is similar to
that for Proposition 5.3, so we shall omit it.

Proposition 6.3. For all classes a and disciplines ®;, we have for Sy
(1) Ri(a, ©;)S5=Sx«R,
(2 2o en, Li (o, ;)84 = S4L;,
(3) Mi(a, B, @;)Sx=L;(c, ?;)SxR,,
where R, and L; are defined on I{™. Similarly, for § we have
4) R/(a, P;)S =SR,
(5) ZaeD( Lo, ®)S=SL,
(6) Mi(c, B, D,)S =L;(a, P,)SR.

Before we prove our main results, we introduce the following set of varia-
tions on the K operator to act on I{V:

1) K=IQ - - QK®Q®---®I (i th place).

(2) K;=Ilic;K; and K, =[l;z: K; where I is any subset of {1,-- -, N},

(3) Kx= [TL K.
In Massey [6], the author used Ky as the (M/M/1)N network analogue to the
K operator for the M/M/1 queue. K, inherits the following algebraic proper-
ties from K:

RiK*=K*+K(i)Ri and LiK*zK*_K(i).

Similar results hold for the K;’s.
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Theorem 6.4. Let X (t),- - -, Xn(t) be a collection of independent M/M/1
queue-length processes where X,(t) has arrival rate \; and service rate w;, where
in terms of the given (MS/M€[1//|GD)N network, we have

A=) (A., + 2, sup uepeu>

aeD; j*i BeD;
w= inf (1= ¥ o).
aeD; BeD;

If X;(0)=Q,(0) for all i, then

Pr{Q()=n,, -, On()Z=n =] PriX(=n}

i=1

for all t>0, and all non-negative integers ny, - - - , hy.
Proof. Let B; = \;R; + w; L; — M, I — w; L; R;. Since the X;(t)’s are independent,
then (X,(1), - - -, Xn(t)) is a Markov process and its generator is Y-, B;, which

acts on I, If A is the generator for the (MS/M€/1//GD)N network, as
defined in (6.1), then p(0)exp (tA)Ssx encodes probabilities of the form
Pr{Q,(t)=ny, ..., Q.(t)=ny}. The Q,(t)’s here are the queue-length process
but in general (Qq(t),...,Qn(t)) is not a Markov process. Regardless,
p(0) exp (tA)S4K, encodes probabilities of the form Pr{Q,(t)=
Ny, ..., On(t)=nyt.

Given this, we need only show that

N
€xXp (tA)S*K*§S* €Xp (t . Z B,)K*
i=1
By previous arguments of this type, we need only show that

N
AS.Ky=S;. ) B, .Ky

i=1

provided that Ky'exp (t.Y~, B)Kx+=0. The B;’s are defined so that they
commute, hence

™Mz

N
exp (t. Bi) =[] exp (:B)
1 i=1

and so

Il
=

-
I
-

N
K3' exp <t. Y. Bi)K* K; ' exp (tB)K;
i=1

K_lexp (t(/\,R"' [.L,L_ A,I - I.L,LR))K.

Il
'®Z

-~
Il
-
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As we showed in Section 3, each K 'exp (t(\,R+w,L—\I—w,LR)K is
positive, so their product is positive also.
We can now proceed to show that

N
AS K= s*( Y Bi)K*.
i=1

Using the algebraic properties of 84 and Ky gives

N
AS*K* = Z Z [Aas*Ri + “’aQaLi(aa ‘I’,)S* + Z #'apaBLi (a, \Pi )S*Rz

i=1aeD; BeD;

N
+ Z Z (109 9] Li (a9 q’i )S*R] - /\as* - #’aLz (aa W;)S*Rl]K*

j*i BeD;

= Z Z [/\as*(K(i)Ri +K*) + “’aqotLi(aa q’l)S*K*

i=1aeD;

+ Z toPosLi(a, ¥;)S(KoR; + Ky)

BeD;
N
+ Z Z “’apotBLi(a9 \Pi )s*(K(J)RI +K*)
j#*i BeD;
A S~ 1oL (o V)Sa(K R+ K |
N
=X 2 [MS*KG)Ri + m(ﬂ% paB)Li (o, V;)SxK)R;

i=1aeD;

N
+ Z Z FaPapLi (o, ‘I'i)S*K(i)Rj = o Li(e, q’i)s*K(i)Ri]

j*i BeD,

g_:[ ZD Au)s*xmni— inf ua(1— Y paB>S*K(i)LiRi

i aeD; BeD;

+ i 2 (SUDP I“"apaﬁ)s*(K(j)Ri_K(i,i)Ri)]

j*i BeD, \aeD;

N N
= Z [)\is*Ka)Ri — w:SxK oL R; — Z Z (EUP P«aPaB)S*K(iJ)Ri]
i=1

j#i BeD; \axeD;

N
=Sy. ) B, . Ky
i=1
and this finishes the proof.

Theorem 6.5. Let Y(t) be an MIM/1 queue-length process with arrival rate A
and service rate u where

™Mz

N
A=L LA p=L SUP e

1 i=1aeD;
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If Y(0)=YiL, Q,(0), then
N
Pr { Y Q@)= n};Pr{Y(t); n}
i=1

for all t>0 and all non-negative integers n.

Proof. Let B=AR+uL+AL—-LR. B represents a monotone process, sO we
need only show that ASK=SBK.

N N
ASK= Z Z [AaSR“_“'aqaLl(as \I’l)S+ Z Z “’apaBLi(aa \I’,)SR

i=1aeD; j=1BeD;

— A8 — o Li(a, \Ifi)SR]K

Z [/\aSR_ l-"aQaLi(aa ‘P,)SR]

iz

i aeD;
N
=) [ Y. ASR-—sup uaanLR]
i=1 LaeD; aeD;
ZASR—uSLR
=SBK
and we are done.
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