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THE NON-ERGODIC JACKSON NETWORK

JONATHAN B. GOODMAN,* Courant Institute of Mathematical Sciences
WILLIAM A. MASSEY,** AT&T Bell Laboratories

Abstract

We generalize Jackson’s theorem to the non-ergodic case. Here, despite the
fact that the entire Jackson network will not achieve steady state, it is still
possible to determine the maximal subnetwork that does. We do so by
formulating and algorithmically solving a new non-linear throughput equation.
These results, together with the ergodic results and the ones for closed
networks, completely characterize the large-time behavior of any Jackson
network.

NETWORKS OF QUEUES; ASYMPTOTIC BEHAVIOUR; STOCHASTIC DOMINANCE; NEW
THROUGHPUT EQUATION

1. Introduction

The Jackson network [3] is an N-node network where the ith node is an
M/M/1 queue with arrival and service rates A; =0 and w; > 0 respectively. The
queues are connected by an N X N switching matrix P, where a customer, after
completing service at node i, leaves and joins node j with probability p;. With
probability ¢ = 1 — =, p; however, it may decide to leave the network entirely.
We shall always assume that p; =0 for all i. Since the Jackson network is
formally a collection of M/M/1 queues, we take liberties with Kendall notation
and henceforth refer to an N-node Jackson network as (M/M/1)". We will say
that a given node i can be filled if A; # 0 or there exists a node j and a positive
integer m such that A;# 0 and p§” > 0, where p{” is the (j, i) entry of P™. We say
that node i can be drained if q;# 0, or there exists a node k and a positive
integer n such that g« #0 and p%’> 0.

Let Q(t)=(Qi(t), -+, On(t)) be the joint queue-length process for
(M/M/1D". Jackson’s theorem characterizes the large-time behavior of Q(t) for
a distinguished class of (M/M/1)" systems, the ergodic ones. We restate
Jackson’s theorem as follows.
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Theorem (Jackson). Given an (M/M/1)" system where every node can be
filled and drained, let @ = [6,, - - -, Ox] be the solution to the throughput equation

0=0P+A
where A =[Ay, -, An]). If pi = 0;/pi and 6; < w; for all i, then

lim Pr{Q\(t)=ni, -+, On(t) = nn} = Ul A—pi)pi

for all integers n; = 0.

The motivation for Jackson’s theorem comes from Burke’s theorem for the
M/M/1 queue (see [1]). It states that whenever A < u, then the output process
for large time is Poisson with parameter A. In other words, for a system in
equilibrium, the ‘output’ is identical to the ‘input’. This in turn inspires the usual
formulation of the throughput equation. Unfortunately, Jackson’s theorem tells
us nothing directly if §; = w,; for some i or if some node cannot be drained. In the
latter case, the above throughput equation may not even have a solution. Take,
for example, an (M/M/1)’ system with non-zero A; or Az, and p.. = p = 1.

In this paper, we shall generalize Jackson’s theorem so that we can describe
the large-time behavior for any non-ergodic (M/M/1)" system. Given existing
results however, it is enough for us to treat a reduced class of networks. For any
(M/M/l)” system, consider the class of nodes that can neither be filled nor
drained. They form a subnetwork that is a closed Jackson network completely
independent, not merely in steady state but for all time, from the rest of the
network. For these closed systems, their large-time behavior is well known, see
Gordon and Newell [2]. Now consider nodes that can be drained but not filled.
They will lose their customers in a finite amount of time and stay empty
thereafter. In light of this, we need only concern ourselves with (M/M/1)"
systems all of whose nodes can be filled.

First, we formulate the throughput equation. The equation arises from a
more careful examination of Burke’s theorem. We can then infer that when
A Z u, the output for an M/M/1 queue is still Poisson for large time, not at rate
A, but at rate u. To make an unconditional statement, we can say that for an
M/M/1 queue, its output process for large time is Poisson with rate A A u =
min(A, u). This leads us to the following throughput equation for an arbitrary
(M/M/1)" network:

0=(0Ap)P+A

where 0 A p is the componentwise minimum of two vectors. This equation was
formulated in Massey [6] and independently derived in Schweitzer [7].

In Section 2, we shall show that the throughput equation always has a unique
solution for any (M/M/1)" system where each node can be filled or drained.
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Moreover, we can give an efficient algorithm for solving it. In Section 3, we then
prove our main theorem.

Theorem 1. Given an (M/M/1)" system where every node can be filled, let 6
be the solution to the throughput equation

6=(0rp)P+2Ar

where = [wi,- -, pun]. If pi = 6;/pi and U ={i l 0; < w;} then

lim Pr{Q (t)=n,;i € U} =[] (1—p)p?

eu

for all integers n; Z0 with i € U. Moreover, if j& U then
lim Pr{Q; (1) =n}=0

for all integers n = 0.

2. Solving the new throughput equation

Intuitively, the method for solving the new throughput equation is very
simple. We can think of 6; as the net input rate into node i. Consequently, ; A w,
is the output rate from node i. When the output rate is 6; and 6 # w;, we say that
node i is stable. Otherwise, the rate is w, and node i is unstable. If we knew
which nodes were stable and which were not, then determining the 6;’s would
reduce to solving a linear equation. We would know the outputs for the unstable
nodes, hence we would know the external inputs for the subnetwork of stable
nodes. Solving for the 6;’s when i indexes the stable nodes, is exactly the same as
solving Jackson’s throughput equation. This now determines the output rate for
all of the nodes, which in turn gives the net input rates or 6;’s for all of the nodes.

Unfortunately, we do not initially know which nodes are stable or unstable.
We can, however, figure this out in a systematic manner. First assume that all of
the nodes are unstable. This means that the output rate is u; for the ith node.
Let 6;(1) be our initial guess for 6; based on this assumption. We then have

O(1)=A + Zl D

Since the true output rate is 6; A w;, our guess is at worst an overestimate of the
true situation, and so 6; (1)= 6. If 6,(1) = w for all i, then every node is indeed
unstable and the 6; (1)’s solve the throughput equation. But if 6; (1) < u; for some
i, then this node must be stable since the true 6; is less than 6; (1). Now we solve
the throughput equation again, using the fact that the nodes indexed by
I)={i '0,-(1)< wi} are stable, and assuming that the rest are not. Call this
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solution 6; (2). Once again, the assumptions are at worst an overestimate of the
true behavior but more conservative than the assumptions made for 6; (1). Hence
we have 6; = 6;(2) = 6: (1) for all i. We then still have 6; (2) < w; for all i in I(1),
and if this set equalled I(2)={i , 6; (2) < wi}, we would be done. If not, then
I(1)C I(2), and I(2) now indexes a larger subset of the stable nodes. We then
repeat the above procedure with I(2). By induction, the I(n)’s will be an
increasing chain of sets. This means that there is some first positive integer n
less than or equal to N such that I(n,)=I(n,+1). Thus the 6;(n,)’s are the
true solution to the throughput equation. This procedure determines 6; algorith-
mically in at most N steps.

Before we proceed proving the above remarks rigorously, let us introduce
some useful notation. Let I be a subset of {1, - -, N}, the set of indices for the
nodes. If J is the complement of I, and @ = [6,, - - -, O~ ], we may partition 0 into
subvectors 0; and 6; or write @ = [0, 8;]. For our N X N substochastic matrix P,
let Py, Py, Py, and Py be the obvious submatrices of P, and let o (P) be its
spectral radius. Note that for any I, o (Pr) = 1 since P is substochastic. Also, we
shall say that 0 =0’ if 6, =0 for i=1,---,N.

Theorem 2. For any (M/M/1)" system where each node can be filled or
drained, the throughput equation @ = (0 A u)P + A has a unique solution that can
be determined algorithmically in no more than N steps.

Proof. Given A, p, P, and an index set I, we say that @ =[6,,- - -, 6] is the
unique solution to the I-partition equation if o(P;) <1, and 8 =[0;, 8;] where

01 = (AI + MJPJI)(I - P")_l
0, =A;+ wiPy; + 6,Py,.

Notice that o (P;) <1 implies the existence of (I — P;;)”' and makes it a positive
matrix, so @ is a positive vector.

The algorithm for solving @ =(0 A w)P + A is to construct recursively a
sequence of vectors @(n) which correspond to a sequence of index sets I(n),
where:

1. I(0)=@.

2. 6(n) solves the I(n)-partition equation.

3. I(n+1)={i|6:(n)= w}

What we shall show is that 6(n) converges to a unique solution @ in no more
than N steps. This follows from an induction argument that proves for each n,
0 (Pinyy) <1 and I(n)C I(n +1). The latter condition ensures that there is
some n, = N with I(n,)=I(n, +1). Then we have I(n,)={i , 6:(n,)=w}and
the solution to the throughput equation is 6(n,).

If n =0, then I(0) = & and these two conditions o (Proe) < 1 and I(0)C I(1),
hold vacuously. Now assume that these results hold up to level n. First we show
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that o (Pim+iyie+1y) < 1. For simplicity, let I =I(n), 8 = @(n),and I, =I(n +1).
Suppose that o (P...) =1, by Perron-Frobenius theory, P.,. has 1 as an eigen-
value which corresponds to a non-zero, positive eigenvector. If L C I, indexes
the non-zero entries of this eigenvector, then P, is stochastic. From this it
follows that none of the nodes indexed by L can be drained, hence they can all
be filled. Let &€ =[&;, - -, é&v] where

6, iel
& =
i, iZL

If M is the complement of L, then
6, = gLPLL + §MPML +AL.

Summing over the components of each vector gives

So-e=5[n 3 en

IEL

By hypothesis, and the definition of £ and L, the left-hand side of the last
equation is non-positive. Equality can then occur only if 6; = &, A, =0, and
&pi =0 forall i€ L and j& L. For every i € L we have A; =0, so there must
exist a j € M such that p; # 0. This implies that & = 0, and since w; >0, we have
& = 6, =0. This implies that A; =0, and so there exists some k € M — {j} with
P #0 and & = 6, =0. By induction, we see that no node in L can be filled.
Since the nodes indexed by L can neither be filled nor drained, this is a
contradiction. Therefore, o(P;:,) <1 must always hold. This creates a unique
solution to the I(n + 1)-partition equation, @(n +1).

By induction hypothesis, I C 1, so let K=1,—1 and have J, equal the
complement of I,. We then have the following equations for index sets I and K,

(2.1) 6, = A + 0,Py; + puPri + . Py
2.2) O« = Ak + 0P + piPrx + ps P k.

By definition, Ox = px so (2.2) is equivalent to
px = (Ax + px — Ox) + 0Pk + pxPxx + ps Prx.

Let 6, = [0:, ux] and A, = [Ar, Ax + px — O], then (2.1) and (2.2) can be written
as

é]_ = X,, + py P+ él.Pl.l. .
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Solving for @, gives
0. = (A + po P )T — Pro) ™.

Let 6* =0 (n +1). Since @* solves the I, -partition equation, then
0% = (ALt p P )T —Pu).

But (I - P..) ' is a positive operator, and AL=A., so 0% = 0,. From this it
follows that I, C{i I 0% = w}. Consequently, I(n +1)C I(n +2) and we have
proved the induction step.

We now show uniqueness. Suppose @ and @ are both solutions and @ is
constructed by the algorithm, then

N
6. — 0, = Z (6 A p; — 6; A w;)p;i.
F=
Taking absolute values and then summing over i gives

N . N . N .
Z |0i—0.~|§;|0.- A i — 0 Aﬂiléi; Ioi_0i|~
The last inequality holds componentwise, hence for all i
IO,' /\#,,‘_0.,‘ A;L;|=|05—éi|.

We then have 6; > y, if and only if 6; > . This means that {i I 6 = wi={i | 6, =
Wi}, but we can construct @ by using the algorithm. Since @ and @ solve the same
I-partition equation, 6 = 6.

3. Proving the main theorem

To prove Theorem 1, it is sufficient to prove that
3.1) lim Pr{Q:(1)<ni;i € U} =[] (1-p7)

and for all j& U, lim,—. Pr{Q;(t) < n} =0. The key problem in proving such a
result is that in general, {Q;(t)}ies is not a Markov process. As a consequence,
the ergodic theorems for Markov chains do not apply directly. We will prove
Theorem 1 by using a coupling argument to stochastically bound, in the sense of
Kirstein, Franken and Stoyan [5], the desired subnetwork above and below by
ergodic Markov networks.

Given an arbitrary parameter ¢ = 0, we shall construct the (M/M/1)" systems
Q" (t)and Q (1, ¢) such that Q; (t, £ )=, Qi (t) =, Qi (¢) for all i by modifying the
original process Q(t). We derive Q*(t) from Q(t) by stopping the flow of
customers from the non-U nodes (nodes not indexed by U) into the U nodes
(nodes that are). We then substitute into the latter, Poisson inputs equaling the
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maximal output rate from the non-U nodes. The parameters for Q *(¢) are then
given as

At pi 1€eU
/\fz{ j;}l‘l’lpl l

Ai iZU
0 iZU and jE U
mipy =
MiDij otherwise
/quf = i -

Notice that Qu(t) ={Q/(¢)}icu is an (M/M/1)" system in its own right where
N’ =|U|. Its parameters are the same as for Q(t) restricted to U except that
wiqi is replaced by wi (g +=;eup;) instead of wqi. Qu(t)is ergodic and 0, the
solution to Qu(t)’s throughput equation, equals 8. This holds because 6 also
solves the U-partition equation for Q(t).

For Q (¢, ¢ ) we take the external rates for Q(t) (wiq:) for the non-U nodes and
increase them until the entire system is ergodic at £ > 0. At ¢ = 0 however, all of
the non-U nodes will not attain steady state. The parameters for Q (¢ ¢) will
then be

A ,:7(8) = A.‘
(3.2) mi(e)pi(e) = wip;
miqi s ieU
pi(e)gi(e)=
wigi+ 60— +e, iZ U

If we let @7 (¢) solve the throughput equation for Q (¢, £ ) then we will show that
lim. ;00 (¢) =0, the throughput vector for Q(t). Notice that lim. ,u (0)=
[pmu, Ov] where V is the complement of U.
These results finish the proof of the theorem since, using Jackson’s theorem on
Qu
lim inf Pr{Q:()<n ;i€ U}z lim inf Pr{O/(t)<n ;i € U}

=[] a-p".

et

Similarly,

limsup Pr{Qi(t)<n;;i € U} = lim sup Pr{O;(t,e)<n ;i € U}

(3.3)
é,g,(l —pi(e)").
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Letting £ go to 0in (3.3) gives us (3.1). Notice that we also have for non-U nodes
linlljtup Pr{Q;(t)<n}=1-p;(e)

and since lim, ;o p;(g)=1 for j& U, we get lim,.Pr{Q; (1)< n}=0.

Now we take care of the technicalities. Since 6 (¢) solves the equation
07(e)=(07(e) A ()P (e)+ A, then |87(e)| =|A |+ | (e) ] s0 {87(e) | 0=
e =¢'} is a bounded set of vectors. This means that we can always find a
convergent subsequence {0 (&« )}x=o Where & | 0 as k — . We shall always have
o (k)= p(0) and P (ex)— P (0) as k — o, so this gives us

lim 0 (e.) = (Li_rg 0 () A u'(O)) P (0)+A

Since 6(0) is the unique solution of this equation, we must have 67 (0)=
lim_.. @ (&x) for all convergent subsequences hence @ (0)=lim. ;00 (¢).

Now to prove that 87 (0) = 0. Solving for u;(0) and p;(0) from (3.2) gives us
g (0)=[pu, 8v] where V is the complement of U, and

Dii» ieU
pi(0) =

%ipi;, iz U

Given 6 = (0 A p)P + A it is then immediate that @ = 0P (0)+ A with 6, =
wi(0) for all i

By Theorem 2, the above argument shows that o(P (0))<1 and 6 =
A(I—P(0))"". Now pui(e)= pi(0)since u;(g) equals w; for the U nodes but it
equals 6; + ¢ for i non-U. This means that p;(¢) = p;(0) for all i and j hence

0 (e)=(0(e)rp ()P (e)+A
=0 (¢)P (0)+A.

So 8 (e)SA(I— P (0))"' =07(0). Since 8 (0)=pu (0)=< pu (¢), we then have
0:(e)< wi(e) for all i. This shows that Q (¢, €) is ergodic for all £ >0 where
0 (e)=AI—-P (g))".

To prove the stochastic ordering results, we note that Q(¢) is a uniformizable
Markov process, that is the rate of flow out of any state is bounded above by a
constant, namely =i, A; + u;. As such, we can decompose Q(t) into a discrete-
time Markov chain that is subordinated to a Poisson process (see Keilson and
Kester [4]). This rigorously establishes the following pathwise description of
Q(¢). Run a Poisson process at rate £ = 2, A; + w,. At each transition epoch of
the Poisson process, flip an independent many-sided coin and choose one of the
following activities for the queueing system to undertake:
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[Ai] = Add a customer to the ith node.
[B:] = Delete a customer from the ith node if possible. Otherwise do nothing.

[Cii] = Transfer a customer from the ith node to the jth node if possible.
Otherwise do nothing.

We then select activity [A;] with probability A/ [Bi] with probability wq: /¢,
and [C;] with probability wp; /€ We note that £ can be larger than =%, A, + ..
Merely add the activity

[D] = Do nothing

and then select [D] with probability

l N
1'—_ z A,"‘f‘ﬂ,‘.
&~

We define Q(¢) using the above pathwise construction. In fact, we build it on
the same Poisson process that we used for Q(t). We then insist that Q(¢) and
Q7 (¢) choose activities with the same probabilities. It will then be clear that if
Q7 (¢) consistently chooses activities that give it more or the same number of
customers in each node compared to Q(t), then Q*(t)= Q(t) on all sample
paths.

We choose Q(¢) to differ from Q(t) in the following manner. For i& U and
j € U, with probability up; /& choose activity [ A;] instead of [C;]. A customer is
still added to the same node for both processes, but no corresponding customer
is deleted for Q*(¢). If Q*(0) = Q(0) = (n,, - - -, nv), then Q7 (¢) = Q(¢) pathwise.

Now for comparing Q (t,¢) and Q(¢), run a Poisson process at rate

N
§=Z/\i+ﬂi+;oi_ﬂi+8iv’
1= J

where | V| is the cardinality of V. Here we can reconstruct Q(t) as before,
choosing [A;] with probability A;/£ and so on but by also choosing [D] with
probability (1/&)[e | V| + Z;ev 6, — ;). Except for [D], Q (t, £ ) chooses the same
activities that Q(t) does with the same probabilities. For j € V, it chooses [B;]
with probability (1/¢)(6; — u; + €). From this it follows that Q (t, £)= Q(t) on
all sample paths.
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