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ASYMPTOTIC ANALYSIS OF THE TIME DEPENDENT
M/M/1 QUEUE*

WILLIAM A. MASSEY
AT&T Bell Laboratories

Using operator analytic techniques, we develop a nonstationary Markovian queueing theory
starting with the M(t)/M(t)/1 queue. We employ an asymptotic approach quite different
from the usual large time analysis. Instead, we uniformly accelerate the queue length process.
That is, we divide the arrival and service rate by a common parameter e. Then, for a fixed time
interval, we consider the asymptotics for the distribution, mean, and variance of the queue
length process as € goes to zero. The effects of € can be quite different for the given time
interval. This gives us a dynamic asymptotic behavior for the queue length process. We can
formulate a time dependent traffic intensity parameter that determines when the process is
asymptotically stable and when it is asymptotically unstable.

Introduction. Employing operator analytic methods, we develop a nonstationary
Markovian queueing theory. By doing so, we establish a theoretical basis to comple-
ment and extend the pioneering work of Newell [6], as well as the results of Keller [3],
Rider [7], and Rothkopf and Oren [8]. Stationary queueing theory begins with the
development of the M/M/1 queue, so we will consider its time varying analog and
refer to it as M(t)/M(t)/1. Specifying some initial time #,, we let Q(¢,,1) be the
Markov process that equals the number of people in the system at time ¢ > ¢,. The
process is characterized by the arrival and service rates A(r) and p(r) respectively. We
will assume that A(f) and u(?) are smooth, positive, real analytic functions of time.

Let p, (2, 1) = Pr{ Q(#y, 1) = n}, then we will have the p,(1,, #)’s solving the following
set of birth and death equations:

2 po(tos)) = MO Pa-i(l0:1) + B(1) Paar(tor 1) = ND) + B(O)Pull0rt) (1)
when n > 1, otherwise
2 polto, 1) = B(D)Pi(to»1) = M) Po{to, 1)

and, finally, p, (1o, 7o) = 6, .

The type of asymptotics that we will apply to the M(t)/M(t) /1 system will be called
uniform acceleration. That is, we introduce a small positive parameter € and look at an
associated queueing process Q(#,,?; €) with arrival intensity A(#)/¢, and service inten-
sity u(#)/ €. Its queue length distribution then satisfies the following set of birth and
death equations:

fa% Pa(to:8:€) = M0) Pai(t0: 13 €) + (D) Pusr(P0, 5 €) = (A1) + (D) Paltos 15€)  (2)
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when n > 1, otherwise
e polto,136) = ()P0 ) = MO) Polto > £5€)

and, again, p,(t,t; €) = 8, .. For each time ¢ > #,, we do an asymptotic analysis on
the mean, variance and probability distribution of the queue length process as ¢

approaches zero. .
It is a valid question to ask why this approach is preferred to the large time

asymptotic method used on the M/M/1 queue. The answer is twofold. First, A and p
are now functions of time so at some specified time it would be unsatisfactory to
approximate the mean queue length, say, by future values of A and . Second, if this
approach is used on the M/M/1 queue, then letting > co in (1) is equivalent to
letting €/0 in (2). Consequently, these two approaches coincide for the M/M/1 queue
but it is the latter that generalizes better to the nonstationary M(t)/M(t)/1 system.

The equivalence of these two methods for the M/M/1 queue shows that the
uniform acceleration method is the nonstationary analog of large time analysis for a
stationary process. Whereas only one asymptotic distribution (geometric or defective)
is associated with a particular M/M/1 queue, for M(t)/M(t)/1, we associate a
different asymptotic distribution for each ¢ > 1,. It follows that a traffic intensity
parameter can be defined indicating at each time # whether the queue is oversaturated
(unstable) or undersaturated (stable) when accelerated. This is established by the
following theorem, which we will prove in §8:

THEOREM 1. Given an M(t)/M(t)/ 1 process with X(t) and p(t), consider the Jollowing
quantity:

St N(s)ds
p*(fy,t)= sup ——.
1 E(lo) fto”'(s)d"

Then Q(1,,t) is undersaturated iff p*(ty,t) < 1. In this case, for each nonnegative integer
k, there exist k I,-sequences { p"(1)}, . .., { p{*X1)} such that each sums to zero and

Pr{ Q(tp,;€)=n} =(1— p()p()"+ epiP () + - - - + PO + o(e**h

where p(t) = N(1)/ p(2); otherwise lim, ,Pr{ Q(t,,t; €) = n} does not represent, a proba-
bility distribution. Also, if p*(to,t) > 1, then Pr{ Q(to,1;€) = n} =0 where a(€) = b(¢) if
a(e) — b(e) = o(€*) for all positive integers k.

For any given M/M/1 process, the traffic intensity parameter p is fixed for all time.
By contrast, p*(#,,) the parameter for the M(t)/M(t)/1 queue, is a function of time.
Therefore, a given M(t)/M(t)/1 process may progress in time from undersaturation 0
oversaturation and back again. These are the two basic modes for the process and,
after the initial layer, they are patched together by two types of transition layers. The
first describes the onset of rush hour. By onset, we mean that the process sees the start,
but not necessarily the continuation, of oversaturation. The second type of layer
describes the end of rush hour, i.e., the transition from oversaturation to undersatura-
tion. The recurring regions and layers of time are characterized by p*(f,, ¢) as follows:

p*(%o,?) < 1=>Undersaturated,
p*(%o,1) > 1=>Oversaturated,
p(t) = p*(to,1) = 1=>Onset of Rush Hour,
p(t) < p*(15,¢) = 1=>End of Rush Hour.
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The possible evolution of an M(t)/M(t) /1 process can be described by the following
flow chart:

{
Initial Layer - - -
{
- Undersaturated «
0 { 1 Initially
Oversaturated
Onset of Rush Hour -
0 { {
Oversaturated
t { $
End of Rush Hour « « «
1 {
«— «

Note that there are two possibilities when the process leaves the initial layer or leaves
the onset of rush hour. Otherwise, it loops through a rush hour cycle.

Starting from the top of this diagram, §§1 through 6 will deal with each of these
regions or layers in descending order. We will introduce the analytic machinery in §0.
Only enough, however, to derive the results that will be discussed in §§1 through 6. §7
will rigorously justify the machinery employed. In the subsequent sections, we derive
from basic principles useful properties of the M(t)/M(t)/1 queue length process. §8
will prove Theorem 1 above and justify our formulation of the traffic intensity
parameter. §9 will derive the time reversal formulas for the mean and variance. In §10,
we will develop a criterion for stochastic dominance. Finally, in §11, we have an
appendix for calculations relevant to §2.

0. Preliminaries. We now present the basic analytic machinery involved in the
analysis of the M(t)/M(t) /1 process. Let

P(to,5:€) =[ po(to. ;) pi(fos t3€) - - - ] (0.1)
then p(t,,7; €) belongs to /,, the Banach space of absolutely summable sequences. We
define the vectors e, , f, and 1 as follows:

e, =[0---010---], f,=[1---100---], 1=[1---111---],
(02)

where e, has a one only in the n, place, f, has ones up to the n, — 1 place and 1is a
vector of ones. The birth and death equations (2) can be written compactly as

€ -3%— P(%o,1:€) = P(¥o, 1; €)A(?), P(lo,205€) =€, , where (0.3)
B0 A(¢) 0 0 ]
B — MO+ r() D) 0
A@=| © m(®) —AM+RO) A
0 0 B(®) = (M) + (1)

It turns out that p*(#y,£; €), where p2(ty.1; €) = Pr{ Q(ty,;€) > n}, will be the more
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useful quantity to use. It satisfies the equations

€ % P*(fo.1:€) = P*(to, A1) + AN(1)ep,  P*(Yo-t0:€) =1,,  where (04
MR N 0 0
k(1) = (A1) + 1(1) - A() 0
AN = 0 r(?) — (A +r(1) A1)
0 0 #(?) ~ (M) + r(1)

Let us denote the fundamental solution for the homogeneous part of (0.4) by
M*(1,,1;¢). It solves the equations

€L MY (ty,156) = M*(15, JAY(D),  M*(to,155€) =1 (05)
It is tempting but incorrect to think of M*(f,,; €) as exp(e ™' [} A*(s)ds). This view,
however, turns out to be useful in characterizing M*(#,,7; €). Witness the following
theorem adapted from T. Kato for the solution of a time inhomogeneous evolution

equation (see Yoshida [9, p. 431]).
ToeoreM (Kato) 0.1. Let T =t — t,, then
[NT]—1

1
exp( —
II ool oy

v )

* V= kK
M*(4,,t;€) thr’x:o( N

X exp( I-:[—]:Z—V—NA‘(to + —[-Ijv—Tl ))

where the product is ordered from left to right.

The interesting relationship to note here is that

[NT]}—-1
im L 4 _[¥7] [NT]\ _ (o+T
Jim 20 A‘(10+N)+(T T)A*(to+—-ﬁ-) j:., A*(s) ds.

Theorem 0.1 turns out to be crucial in characterizing the asymptotic behavior of
M*(1,,1; €).

A bounded operator on /, is said to be positive if it maps positive vectors to positive
vectors. Given two bounded operators A and Bon /,, we say that A< Bif B—Aisa
positive operator. If we let L denote the left shift operator on row vectors in /;, and R
the right shift one, then A*(r) can be written as follows: A*(?) = A(©)R + p(f)L -
(A1) + p(L It is clear that R and L are positive operators and

exp(A*(1)) = e " MO exp(A()R + p(?)L).

Hence exp(A*(?)) is a positive operator as well or exp(A*(#)) > 0. By Theorem 0.1, it
follows immediately that M*(¢,,7;¢) > 0. The fundamental result of §7 will be t0
derive the following operator upper bound for M*(¢,,1; €):

a0
M*(,,1;€) < e““‘-*‘")/‘(lo( % \/A,,;. )l +3 (pf/’lt" + p;"/’L")I,,(% VAste ))
k=1
(06)

where Ay = [} A(s)ds, e = [/, 1(5)ds, pu=Ay/pts, and I(-) is the kth modified Bess¢

4
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function. From this it follows that M*(¢,, ¢; €) converges to zero in the strong operator
toplogy as €l0, given [; A(s)ds < [ u(s)ds. Other useful properties of M*(t,,1; €) are

e M*(t9,1;6) = —A*(1)M*(10,5°),
0

for all s € (£, 1)
M*(1,,s; € )M*(s,1;€) = M*(1y,1;¢), and 0.7)
IM*(1p,1;€)|;, < 1. (0.8)

We end this section with two representations for p*(#,,#; €) as a vector in /; space and
I, space respectively,

P*(f,t;€) = é—[r)\(s)coM‘(s,t;c)ds + f,,nM*(to,t;e),
0

P*(to-1:€) =1+ (f, — h)M*(5,, 1 ¢).

(0.9)

1. Initial layer. Consider the queueing process Q(Z,, 1) with Q(1,,1,) = n,. Esti-
mating the behavior of Q over a small period of time compatible with the processes
Q(ty,t; €) suggests that a time interval of length order e is appropriate. Consider
[ts:to + €T] as the interval of time. The average number of customers arriving in this
time period is € "' f{2* "A(s) ds. Expanding in e gives

2 L o <T) (s)ds = A(o)T + O(€)

as € goes to zero. This is motivation for the following analytical result.

ProPOSITION 1.1 For all T > 0, we have M*(ty,ty + €T; €) = exp(A*(15) T) + O(e)
with respect to the operator norm as € goes to zero.

Proor. It can be shown that
M*(ty,1, + €T; €) — exp(A*(#,)T)

= %L‘TM‘(I"J" + 5;€)[ A*(ty + 5) — A*(1o) |exp(A*(#o)eT — 5)ds.

By the mean value theorem, we have
[A* (1 + 5) — A*(to)]; < 2[IN(to + 5) = A(to)| + | B(to + 5) — n(%)l]
<2ANEN + W)l ]s

for some £, and £, in (#y, %, + €T). Now apply (0.8) and the rest follows. &

This result supports the notion that the process Q(t,, t, + €T'; €) as € approaches zero
converges in distribution to an M/M/1 queueing process with A(Zy) and p(Z) as the
arrival and service rates. Calling this process Q(?(T), it follows that

Pa(to,to+ €T5€) = piO(T) + O(e),
E(Q(to,1o + €T;€)) = E( Q(T)) + O(e),
Var( Q(fo, % + €T;€)) = Var( QO(T)) + O(¢).

S0 determining the initial layer for the process M(t)/M(t)/1 reduces to the analysis of
the M/M /1 queue up to order e. Later, it will be clear how this layer matches up with
the subsequent undersaturated or oversaturated region.
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2. Undersaturated region. In this region, we exploit the fact that p,(¢,,¢; €) has an
asymptotic expansion in € when p*(#,,7) < 1. Formally, we expand p(¢,,¢; €) as
P(to.1;€) = po(?) + €py() + O(€%) (21
where po(t) and p,(¢) belong to /. Subsmutmg (2.1) into (0.3), equating coefficients
and ignoring initial conditions gives:
PDA) =0, Pi(YAW) = L py(s).

Adding the conditions py(f)- 17 =1 and p,(¢)- 17 = 0 determines these two vectors
uniquely for A(#) < p(r). After quite a few calculations, see the appendix (§11), one
gets the following formulas for the distribution, mean, and variance

. . n p’(t) p(t) n(n + 1) n—1
Pa(to-t:€) = (1 —p(2))p(t) + € o) ( (1= () -3 p(1)" "'+ O(é%),
_ D P T+
B 5= T0® ™% (=pr)
) PO THap(n+e)
(1-p()  HO  (A-p)

It is worthwhile to stress here the difference between being able to formally calculate
an asymptotic expansion and having the expansion actually be valid. The expansions
above can be derived whenever p(¢) < 1, but they are only valid when p*(t,,1) < 1.

0o(€%),

Var(Q(to, 1 ) = ().

3. Initially oversaturated region. The criterion for oversaturation is p*(Zy,7) > 1
and the system is initially oversaturated if p*(¢,, -) > 1 on (#,, ). Accelerating such a
process, one would not expect to reach any stable equilibrium but rather see the queue

length growing.
If a queue is oversaturated, then the server tends rarely to be idle hence the average

queue length should merely be the “flow in” minus the “flow out” or [} JA(s) — p(s))ds
plus the initial load of customers n,. Looking at an accelerated process, one would
expect € '[! W[A(s) = p(s)]ds to be the dominant term for the average queue length
E(Q(t,,1; €)). The following equations for the mean and variance of Q(#,, ¢; €) provide
more evidence for this assertion.

PROPOSITION 3.1.  For any M(t)/M(t) /1 process Q(t,, ¢; €) we have

e L E(Q(to,5:6) = M) — (1) + p(Dpelto, 1),
! 3.

c%Var( Q(to-1:€)) = A1) + p(?) — n(N[2E(Q (%0, £:€)) + 1] polto 15 €)-
ProoF. These formulas follow simply from (0.4)
e% E(Q(t,t:€)) = E{%l"(‘m’;‘) 7
=p*(t, AN + (1)
= —p(1)(1 — polto:1:€)) + A(?)
and a similar argument is made for Var( 0(1,,7;€)). &
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If the queue is oversaturated with py(ty,1;€) =0, then [2E( Q(t,,1; €)) + 1] Polto. t;€)
~0, and so

aE(Q(to" )= —— 0- F()’ Va‘(Q(’o’t ))N"_)_E(“)‘- (32)

Furthermore, by this argument ¢! WAS) + p(s)ds is the dominant term for the

variance.
We can make all of these ideas precise by the following theorem, which we will

prove in §9.

THEOREM 3.2.  Given the process Q(1y, - €) on (to,t) with X(-) and p(-) with (. ¢;
€)= ng, let Q(t,t;€) be an _M() /M(t)/ L process that starts at time t and evolves
backwards in time to ty with X\ = p, f =\, and O(1,1;€) = 0 then

E(Q(t.t:€)) = %J’:[)\(s) - p,(s)] ds+ E( é(to,t;c) V ng), (3.3)
Var( Q(%,t€)) = %j;'[}\(s) + u(s)] ds
+ %j’:()\(s) — () E( é(s, lo;€) V ng) — E( Q(t, 1o:€) V ng))ds

+nd+ng— E(Q(t15:€) V ng)— E(Q(t.103€) V ng), (34)
where a V b is the maximum of a and b.

For this initially oversaturated case, we can now derive asymptotics for the mean
and variance via these time reversal formulas. They reduce the problem to deriving the
asymptotics of the mean of the reversed process where in this case the process is
undersaturated. Since Q(1, ,; €) is undersaturated then

R

where 1/p(t5) = p(19)/Mtg) <1 so the asymptotic expansion for E(Q(t,,7;¢€)) is
simply:

E(Q(to,1;€)) = ~l-f'o'[J\(s) ~ p(s)]ds+ no + (p(+o)) T:Tl/—iﬁ +0(e)

where the constant term is merely the average of the maximum of n, with a
geometrically distributed random variable. This term is interesting in the sense that
intuitively we would not expect such a constant term. The analysis speaks otherwise
and we get in effect a modification of the initial load. Compare this expansion with the
one given in Clarke [1] when p > 1. Note that the constant term as well as the rest of
the O(e") terms have no ¢ dependence and so (3.2) is still true.

Doing a little more work with the formulas for the variance (see [5]) gives

4n,+3 4n, + 1 1
P gt 2 + Ing+2
(%) P(to) (%)
(1= 1/p(t0))’

+ O0(e).

Var( Q(1y,1;€)) = —-f A(s) + p(s) ] ds—

4. Onset of rush hour. A system comes to the onset of rush hour at time ¢, > ¢, if
p(-) < 1 on (1,,7) but p(z,) = 1, which implies the same type of behavior for p*(1, -).
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From here p(-) may exceed 1, making the queue oversaturated, or come down to
below 1 again and return the system to undersaturation. This can be characterized in

general by doing a Taylor expansion of p(-) about ¢,:

P(k)(’l)
k!

where sign(p(®(#,)) = (— 1)**'. Although in practice, one would only consider k to be
1 or 2, it will be useful to observe the general effect that the number k has on the
asymptotics of the mean and variance. Aside from this general use of k, the develop-
ment here will run parallel to the arguments put forth by Newell [6].

Recall that when A = u for the M/M /1 system, the leading asymptotic terms for the

mean and variance are 2yAt/w and (1 — 2/m)2\s respectively (see Clarke [1]). These
same values are attained by the process | W(2At)| where W() is standard Brownian
motion. By analogy, the M(t)/M(t)/1 process in a neighborhood of f, should be
approximated by an appropriately scaled diffusion process.

This approximation will be localized in a neighborhood about ¢, in such a way as to
be compatible with the uniform acceleration method. In a similar manner to the initial
layer, consider the interval [¢,,¢, + ¢°T] where a is an unspecified positive real number
and T is the localized time scale. For the process Q(#,t, + €°T;¢€), we want to
approximate its infinitesimal mean and variance with respect to T, which shall be
denoted by m(T;¢) and o%(t;€). This is achieved by taking the T-derivative of the
contribution to the mean and variance over the interval [7,,¢;, + €°T] and looking at
the leading € term. For the mean we get

p()y=1+ (t— t)k+ o((r — 1)**") )

“ A9 @) — ()
d 1 €T 1 1 1 a
m(tie)= <% — ’I"* [A(s) = n(s)] ds= e p T* + O(¢°)

and similarly the variance gives

oX(t36) = & L (" T[A(s) + u(s) ] ds= =15 [2n(1) + O(e%) ],

dT ¢ 1

To have the proper scaling for a nonreflecting diffusion, the growth of the variance

as €/0 should be the square of the growth for the mean. Hence 2(1 — a(k + 1)) =
1 — a, which implies that « = 1/(2k + 1) and so

A(k)(ll) - I‘(k)(tl)
k!

el—-n:z

1

k a
k/D) T+ 0(¢%) |,

m(T;e) =

) 1 «
oX(T;e) = gy [2u(1)) + O(e9) ).

Define a process Q(V(T) which is the reflecting version of a diffusion with
infinitesimal mean and variance

A~ B0
k! ’

m(T)= o}(T) =2p(ty).

We can then say that
Q(l)(T)wek/(zkH)Q(to’t' + V/@k+DT, i)

in the sense that their infinitesimal means and variances match up for small €. Here,
the effects of € and T have been separated and one can approximate the mean and
variance of Q(#,,1,; €) by starting with a convenient initial distribution and solving the
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following Fokker~Planck equation for p"(x, T) the density of Q"(T):

A1) — 5B
0Ty = = 0D 0 7y ) (e, )

with [&p"(x, T)dx =1 for all T where x is the space variable and has the scaling
dimensions of x = ¢*/(%+ Dy,

To initialize this density, recall that for ¢ < 1, p,(f.t;€) = (1 — p(D)p(1)" + O(e).
Now subject (1 — p(£))p(1)" to the diffusion scaling i, t —t, =€/ **VT and n=
[x/€*/k* D] We then get

Therefore, given T'< 0, p{"(x, T) should look like the exponential distribution given
by the above. The Fokker-Planck equation should then be solved for a density on
[0, o) with the above as the initial distribution.

It is important to point out that this equation need not be solved (numerically that
is) each time for different A and g, only for different k. If we make the following
substitutions by abuse of notation,

p(k)(tl) T*

p()T*
k!

exp( - X i

. 1 n
lim — s (1~ p(0)e(?) =

~1/@2k+1) —1/Q2k+1)
Y )Pt
replace _Ip__(_._)_{_ xbyx and -—-———————#( DIP(1) TbyT
kpy 12
n(t)k! k!

then the Fokker—Planck equation becomes the dimensionless equation y4(x,7) =
- TR0, T) + ¢x, T) with (9™ (x,T)dx =1 and for all T and y¥(x,T)~
(~ TYexp(— x(— T)*) for T<0 and then p"(x,T) can be expressed in terms of
YO (x, T) as

1/2k+ 1

o= [0 [l 7t
P > p.(l,)kk! H(ﬁ)kk! ’ o )

A final comment, if A = p on (fy, 1), then E(Q(t, ;€)= O(1/ Ve ), whereas having
A(t) = p(t,) suggests that E(Q(tg, £; €) = O(1/e*/ D),

Note that as k — co, the values of A(-) approach the ones for u(-) everywhere on
(ty,2) and k/(2k + 1)11/2.

5. Main oversaturated region. This is a region where p*(Z,,) > 1 but there is some
time in the past s with £, < 5 < t and p*(#y,s) < 1. To obtain an asymptotic formula
for the mean, we combine the techniques of the last two sections.

First, we use a generalized form of the time reversal formula for the mean. Take
some intermediate time point ¢, in the interval (7, ), then we have

E(0(h,59) = L ['[N5) ~ ()] d+ E((01a3) V Qltortai)) (D)

where we assume that Q and é are independent processes and Q(Zy,14;€) = 0. We
then choose 7, to be the last time that p(t,) = p*(2,, ) = 1. This makes O(,1,; €) and
O(1o, 15 ; €) bath M(®)/M(t)/1 processes at the onset of rush hour. Their diffusion
approximations both use the same data from A and p at time #,. Assuming that the
mean of their maximum differs little from the mean of either one, at least up to order
€k/(2k+1) e then have a way of approximating the mean of the original process.

If we use notation that will be defined in the next section, we can express the
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qualitative behavior of E( Q(t,;€)) and Var( Q(#,,¢; €)) as follows:

E(Q(lo,1;€)) = %ft’[x(s) — u(s)]ds + o*(ﬁ),
Var( Q(t,,t;€)) = % t'[A(s) + pk(sj)’] das+0" ( m )

6. End of rush hour. This transitional period is characterized by p*(#,,#) = I and
p(1) < 1. The onset of rush hour has some ambiguity about whether the process would
go on from there to undersaturation or oversaturation. For the end of rush hour, we do
not have this problem. The backlog effects that help shape the oversaturated asympto-
tics have no first order influence on the undersaturated asymptotics.

While approximating the process at this time point is difficult, we can at least make
some qualitative remarks about the mean and variance. This can be achieved by using
what we will call the order-plus method. That is, short of demonstrating that some
quantity is of order O(1/€®), we show that for every § > 0, the quantity is of order
o(1/€**%). We shall denote such a quantity as O * (1/€). To illustrate this usefulness,
we apply it to the onset of rush hour period.

PROPOSITION 6.1.  If p(¥) = p*(ty,1) = 1, then
ceY) = 1 . 1
E(Q(t0,59)= 0 (e ) Var( @Uio,59) = O e )
To prove this, we first need the following lemma,

LeMMA 6.2. Let A(-) be less than p(-) on (t,,t,) and A(t)) = u(t,), then p*(ty,1,;€)
> p*(t, — €°T,1,;¢€) as €|0, where a < 1/(Rk + 1) and T > 0.

Proor. By (0.9), it is sufficient to show that
.!. fh“e"TA(s)coMt(s’ tl; E)d?ﬁ 0
€ Jg,

as €/0. The problem can be further reduced to showing that e,M*(¢;, — €°T,7,;€)~0
and by use of the operator inequality (0.6), we can say that

legM*(1, — €°T, 1 €)]; < €A+ B(N/e 2 Pe (e)"/zlk( VAu()a(€) )

where Ay(€) = [1_ P A(5)d5, po(€) = [7!_ rp(s)ds, and p*(€) = Ao(€)/ pa(€). This holds
because e,L* = 0 and |e,R¥|, = 1. Using the properties of modified Bessel functions,

we have
(2 Vhu(omao ) < erohsono.

Since p.(€) < 1 here, then

leoMt(’] — €°T, th‘)ll P ( ) —(I/t)(ﬁ—(e-) \/:rt;) (6])

As €l0, p,(€) goes to 1 and A,(0) = p,(0) = 0.
Without loss of generality, we will assume p(-) to be constant 0 pe(€) = pe’T-
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Making use of (4.1) for p(-), we get

ot~V =/ [ Moyds —ie'T

=V pe°T \/6—37—, “"_cﬂTP(S)ds - 1]

[ RO
— « 1 ( 1) eatk+ Dk+1 a(k+1y _
=y peT Jl-f— Pr (k+l)' T + O(e ) —1

=\/;€T;Fr (k)(tl) ek Th+ 4 O(Ea(k+l))
Z(k + l)'
- 0(€a(k+l/2)),

(V}\a(e =V ta(€) )2= O(Gaakﬂ))‘

By (6.1), we get exponential decay whenever a2k + 1)< lora <1/2k+1). &

PrOOF OF PROPOSITION 6.1. By Lemma 6.2, E( Q(ty, ;€)== E(Q(t, — €T, t,;¢€))
for T>0 and a <1/(2K + 1). At this point, we employ a stochastic dominance
argument. On the interval (¢, — €°T,¢,), A(-) is close to u(-) since A(#)) = u(¢)), but
A(-) is less than u(-). Without loss of generality, we let u(-)= p a constant, and
consider Qf, an M/M/1 queueing process on the time interval (¢, — €T, ;) with p for
the arrival and service rates. We then have a system with the same service rate as Q
but a larger arrival rate. One would then expect Q1 to be larger than Q. This turns out
to be the case stochastically which we shall prove in §10, but for now we will say that
E(Q(t, ~ €°T,1;;€) < E(Q(t, — €°T, 1,5 ¢)). But Q7 is a stationary process, so we
can say by abuse of notation that

E(QY(t, — €T.t;;€)) = E( Q'(e*"'T))
and a < 1/(2k + 1) so as €/0,

- _ 2uT 1 Pt
a-—1 a 2
E(Q*(e T))—e( h/ - 3 +0( 7 )

Therefore
limsupe!' ~0/2E( Q(tp,1; €)) = limsupe!! "V 2E( Q(1, — €°T 15 €))
€l0 €0

<lime('"72E( Q¥ (e*™'T
im (')

24T
i
But T > 0 is arbitrary so
lidlge“”")/zE( Q(,1;€)) =0,

and since a < 1/(2k + 1), this holds for (1 — @)/2 > k/(2k + 1).
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For Var( Q(#;,1; ¢)), we follow a similar argument, making use of n. &
Compare the results of Proposition 6.1 to the informal arguments of §4. We now use
the order plus method for the end of rush hour.

PrROPOSITION 6.3.  If p(t) < p*(ty,1) = 1, then

E(Q(to,1;€)) = o+(‘-/_1-), Var( (o, 1;€)) = o+(%).

To do the proof, we first require two lemmas.

LEMMA 6.4. If p(t) < p*(ty,1) = 1, then there exists a time t, such that X(t,) = u(t,),
[1A(s)ds = [} u(s)ds, and for all 7, where 7, < T < t, [T N(s)ds > [}, u(s)ds.

PROOF. Since p*(#,,7)=1 and p(¥) < 1, there exist a + and a § > 0 such that
[*A(s)ds = [,p(s)ds holds, and it implies that 7 < r — 8. Let 7, be the largest such .
Since [;A(s)ds < [;p(s)ds from all 7 in (¢,,7), it holds that ] A(s)ds > [}, p(s)ds.

Finally, A(t,)= p(t4), otherwise one could find a ¢ to ¢, such that [{A(s)ds
> [} n(s)ds which would contradict p*(y, /) =1. &

LEMMA 6.5. The time reversal formula for the variance (3.4) can be written as
Var( Q(to.1;€)) = -f A(s) + n(s)] ds
+ 2 L[ 10 - w®) 4 )u(o)potto s de
+nd+ ny— E(Q(t15:€) V no)’ ~ E(Q(1,15:€) V ny).

Proor. By combining (3.1) with (3.3), we can show that

B Plto:15€) = €L E(Q(1,153) V o)
therefore

%j“o'(;\(s) ~ () (E( Q~(s,to; €)V ng) — E( é(t, 10 €) V ng))ds

= = 5[0 ~ 1) [ n@potto, ) ags

- 2420 - r©%) [ w@putro &9 dtds

<2 om0

and the rest follows.

PROOF OF PROPOSITION 6.3. By the lemma above, it is sufficient to consider the
case of A(to) = u(to), [iA(s)ds = | u(s)ds, and [iMs)ds > ; p(s)ds whenever 1, <7
< t. Since A(tp) = F(’o) we expand p(- ) about t; as p() = 1 + (0P (1) / k!Xt — 1) +
O((r — 1)*").

As €l0, we can say that f, M*(1,,7; 17 = O(1) at least, so we will ignore initial
conditions and say that

E(Q(to5;9) = 1 Ex(s)cow(s,:;e)lrdw o).
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We know by remarks in the proof of Lemma 6.2, that if 7, < 7 < ¢, then e;M*(7, ;€)1

~0. So in fashion similar to the proof of Lemma 6.2, we introduce a local time scale T
and try to determine an upper bound for a such that

J- f’MS)eoM*(s’t; E)]Tds,z _l_ flo*'(nTA(S)eoM'(S, t: £)1Tds.
€ 1o € Iy
Just as in Lemma 6.2, we can show that
- =]
[eoM*(to + €°T, 1;€)|, < e~ A+ (/e zop,(e)"/zlk( %— VA(€)e(€) )
k =

where Ay(€) = 1, orA()d5, Ra(6) = [io s rit(s)ds, and py(e) = Ay(€)/ua(e). And as

before, we need only determine the order of (\/A*(e) -—\/ Ba(€) 2. Let T = [i\(s)ds
= fop,(s)ds, then

\/)T(()— _ ,p.*(e - \/r__j’:o+<“TA(S) ds — \/r—j;:ws"rp(s)ds
_ S8 Tn(s) — N(s)ds
VT = [ <TA(s)ds + T — fo*<T(s)ds
- o [+ ur -0

= 0(€a(k+ l)).

Therefore, (YAu(€) — Y pa(€) )> = O(e**** ") and by (6.1), we get exponential decay

whenever 2a(k + 1) <1l ora <1/2(k + 1).
Now by (0.7), for 1, < 5 < t, + €°T we have

M?*(s,t;€) = M*(s5,15 + €°T; )M* (£, + €°T, 1 €)
and so by (0.8), e;M*(s, #; €)17 < eM*(s, 1, + €°T; €)17. Hence,
2! f 0+ Th(s)eM* (s, 1; )17 ds < L f 0t CTr(s)egM*(s, 10 + €°T; €)17 ds
€ Jg, € Jg

~1 f,., o+ CTIN(s) — u(s)] ds+ O(1).
Therefore,
E(0(w.1:0) = 0 e )
But T is arbitrary, so
E(Q(t,559) = O 5otz )

which holds whenever 1 — a(k + 1) > 1/2, given our constraint on a.

We now use (5.1), the generalization of the time reversal formula where le is chosen
to match the specifications of Lemma 6.4. We then get E(Q(4, 1;€)) = E(Q(1,14;€) V
O(to, 243 e)) In comparing (1,2, ¢€) to Q(fo, 143 €), We note the mean of the latter is
equal to O * (1/€*/(+ V) by Proposition 6.1. Whereas for 0, we use the time reversal
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formula again to get E( Q~(t,t,,; €) = E(Q(t4,1;€) = O * (1/e). This suggests that as
€l0, O(1,14; €) dominates Q(Z,, 1; €) and E( O(1,,1;€)) takes on O * (1/+e ) behavior.
For Var( 0(#,¢; €)), we appeal to a generalized time reversal formula,

Var( Q(t,t€)) = -l-j;'[}\(s) + p(s)]ds+ E%j:‘(f”x(e) - u(i)d£),.¢(s)po(t,. ,8;€)ds

—-E( Q~(t,t,;£) \% Q(to,t,;e))z— E( Q~(t,t..;c) V Q(t,143€))
+E(Q(to,t4 €)'+ E(Q(to:143€))

where 7, is the same time point that we chose for the mean.
By the previous analysis, it is clear for all except the second term, that each
summand has order O(1/¢). We are left with the analysis of

%Jx‘:(fj}\(f) - #(g)df)u(s)po(t‘ )55 €)ds.

Whenever ¢, < s < t, we have py(ls,s;€) =0, so we need only consider the behavior

about the endpoints.
Case 1. s=t. This is like the onset of rush hour period so we can restrict s to the

interval (¢4,14+€°T) where a < 1/(2k + 1). Now consider an M(t)/M(t)/1 process
Q'(t4, 14+ €°T; €) where A'(-)= pi(-)= p(-). It turns out that Q% is a stationary
process and since p(-) <A(-) in this region, Q7 < Q in the sense of stochastic
dominance so

Pr{ QM(te ta+e°T) > 0} <Pr{ Q(ts,te+€°T) > 0}
or in other words
Po(te te+€°T) < pl(te,te+eT).

But pi(te,ts+€°T) = O(e"' /%) and 50 p(ts,?.+€°T) has the same order. Since
A(ts) = u(t,) and p(t,) can be expected as in (4.1), we get

2 l‘+e“'r S, . ~ i . . .
?f,. (J".}‘(‘f) - I‘(f)df)u(s)po(t. ,8;€)ds= 0(:2_c (k+2)(1- @) /272K z)

- O(Ca(k+3/2)-3/2T2k+2)

and 3/2 — a(k +3/2) > 2k /(2k + 1) so this term is certainly O * (1/¢).

Case 2. t,~t. Here it is like dealing with the end of rush hour period. We would
calculate the upper bound for a just as we did for the mean. The only difference would
be that A(f) = u(?), but this would be as if we set & = 0 and so we must have a < 1/2.
Since [[ A(s)ds = [}, u(s)ds, we get

L (00 s

=2 ([0~ n@dtjuepte.si9as

= O(X*~ 12

but 2(1 — a) > 1 and T is arbitrary so we get O * (1/¢) for this term and we are done.
'
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COROLLARY TO PROPOSITION 6.3. For the main oversaturated case we can prove that
. 1 r? 1
Var(Q(to. ) = £ ["[s) + n(s) ] ds+ 0+(m).

ProOF. We merely repeat the work done for Var( Q(1,,; €)) above and note that
Case 2 does not apply here. 8

7. The asymptotics of the fundamental solution operator. In this section, the
following fundamental theorem will be proved.

TueoreM 7.1. If [, M(s)ds < [i p(s)ds, then for all g in I, im gM*(1o,t;€) =0
and if g is a finite dimensional vector, then the rate of convergence is exponential. If we
merely have p(ty) < 1, then gM*(t,,t;€) = O(€") provided g=g* —g~, where g* and
g~ are positive and both belong to the range of A%(1)".

The proof will use the following three lemmas:
LemMA 7.2. Let R and L be respectively the right and left shift operators, then
exp(A(R — I))exp( p(L — I))

- e—<x+~>[10(2‘/i; Ji+ S (( %)"’ "Lk + (%)k/zkk)lk(z\/iﬁ )]

k=0

ProOF. Let S be an operator with both S and S~ bounded. Then
exp(A(S — D)exp(p(S~' —I)) = e~ A*Pexp(AS)exp(pS ")

—eon 3 (A s, 0)

k= ~ o0

since e?*/2. 7 2= xk[ ().

Now L is a right inverse operator for R, that is RL = L. Since L is only applied to the
right in this lemma, we get the same result that we did with S. We merely replace S*
by R* and S—* by L* for k a positive integer. 8

LemMa 7.3. If A < p, then for all g in I,, lim ogexpA(R — D)exp(p(L — 1)) = 0.

ProOF. Letg={g,...gn0...] be a finite dimensional vector and for simplicity,
let p=A/pu. Then

gexp(\(R ~ h)exp(u(L - 1))
- o ufpiege ()" (3) o o)

However, glL* = 0 for kK > N and jgL*|,, |gR*|, < |g|;- Combining this with p <1 and
the key inequality 1, (x) < e* for x > 0 gives

o r }/X-J; 2
lgexp( 3 (R - D)exp( £ L - D) <Igh _z_Npkfzexpk_ £______)_
I8l exp'-- (‘K"\[II) }-

PN/Z(I —J;) | €
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Thus we have shown that the lemma holds for all finite dimensional g. In fact, we have
shown for all such g that the rate of convergence is exponential. Since such vectors are

dense in /,, the rest follows. #
LemMa 74. Let At =AR+pL—- A +p)lfori=1,...,n; then
exp(A}) . . . exp(A;) < exp((A; + - - - +A )R- D)exp((py + - - - + w,)(L = 1)).

PrOOF. Use induction on n.

(n=1) We have RL =1, but LR is a diagonal operator with a zero in the first
diagonal entry and ones thereafter so LR < RL. The function e* has a power series
representation that converges absolutely for all x. Moreover, the coefficients of this
series are positive. So we expand exp(AR + uL) by the power series representation.
Since it is clearly by induction that AR + L) < 3% (A u*~'R'L*~, then

- ]

xR + ul) = 3 LR+ uL)

© 1 k
< 2 __k_ 2( )Alpk leLk i
k=0 =0

0 k
A P- i
<i§ 2 —' ')' L

o0 ; - -]
A Il" .
<SApS Ky
g;, il 2_:0 J!
< exp(AR)exp( uL).
Multiplying both sides by e “**# | we have demonstrated the hypothesis for the case

n=1
(n=>n+ 1) By induction hypothesis, we have

exp(Al) . .. exp(Ar)exp(Ar, ;)
<exp((A+ - +ANR-Djexp((u + - - + )L - 1))
X exp(A, 4 (R — ))exp( p, 4 (L — I)). 7.1

By a similar argument to the case n = 1, it holds that
exp((m + - -+ + w,)(L — D)exp(A, . (R — D)
< exp(A, (R —D)exp((p + - - - + p YL 1))
This allows us to rearrange terms in (7.1) to get the desired upper bound. #
Proor oF TueoremM 7.1. From Lemma 7.4 and by Kato’s 'representation for
M*(2,,¢; €), it follows that

M*(1,,1€) < exp( f A(s)ds(R — l))exp( f r(s)L -~ I))

Lemma 7.2 proves (0.6) and Lemma 7.3 proves the first part.

For the second part, let g be positive, if p(%,) < 1, then there exists an interval (fo, le)
such that p(-) <1, given the continuity of A(-) and u(-). Also A= SUD, < (/. ,,,MS)
<inf (s #(3) = . Let A* = AR + pL — (A + DI, then we can use a stochastic
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dominance argument (to be proved in §10) to say that

te— 1y .
gexp( . A‘)

|gM*(%, 5 €)l; < IBM*(‘thif)ll <

We note that the range of any given A* is the same as long as A < p. By induction, we

can say the same for (A*)". Since p = X/ < 1, the rest follows (see [5, p. 5] for details).
]

8. A nonstationary traffic intensity parameter. We now establish the usefulness of
the quantity p*(Zo,?) as a traffic intensity parameter where

[1A(s)ds
p*(%,1) = sup —7'—5—)——
tneton [i,1(5)ds

Proo¥ oF THEOREM 1. Recall from the definition of p*(t,1; ) that
p(lo-1:€) =] Lp*(%,5:€)]A — L). 8.1
So it will be sufficient to prove this theorem for p*(fo,; €)-
[Undersaturation = p*(#, 1) < 1] Suppose that p*(fo,7) > 1. If the inequality is

strict, then there exists a t,, in (1o, t) such that fiNs)ds > [i, n(s)ds. By use of (0.9), we
can say that

Pr(to,:€) =p*(to, 15€) - ef=1-(1- f,,o)M‘(to,t;c)e,Tz 1,

since by (0.7), (0.8), and Theorem 7.1, |e,M*(to, 7 €)7|, < le,M*(t,1;€)"|, == 0. But by
(8.1), py(to,1;€) = pr_i(to, ;) — P, 15 €) 50 pr(to, 15 €)=0.

Now suppose that p*(f,1) = 1, then either p(f) =1 or there exists a 4 such that
[t \(s)ds = [}, p(s)ds. If the former holds, then we can employ a stochastic dominance
argument. Let Q'(f,,¢;¢€) be an M(t)/M(t)/1 process where pt¢) = p(-), but AT()
< A(+) so that p¥(-) < 1 on (#,). Then

E(Q(to-t:€)) ? E( Q*(to,t;e))

and as €}0
. _ p'(1)
lclf(l‘)lE( Q(to-1;€) 2 ——-—-—~—1 =o' .

But p(¢) = 1, so we can take p'(¢) arbitrarily close to 1 which makes lim,E( Q(to, 1 €)
blow up, showing that Q(#y,?) is oversaturated.
If the latter case holds, then it is easy to show that lim,ole,M*(tx, % 67|, <4 and so

lim,, p(%o, 1; €) > §. However, Pt ;0)=1— (Pt ;) + - + Pa(lo 15 €)), and so
we have

lim pofo,15€) + * * + paltor 1:€) <3
for all #. This means that lim, 4 p, (%, ; €) does not represent a probability distribution
and, of course, lim (,E(Q(f,1; €)) blows up.
[p*(1p,1) < 1 = Undersaturation] Define p$(¢) for k = 0,1,...,n as follows:
B = ~MOEA D Bl = (SR (82)

As long as p(?) < 1, these are well defined /;-vectors. This follows from the fact that the
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generating function of each pf(7) will be a rational function. We then make use of a
result derived in [5, Proposition 1.2.2}.

It is sufficient here to assume that ny = Q(#,,15;€) =0 and p(-) < 1 on (2,,7). This
holds since p*(¢,, f) < 1 implies that p(-) < 1 on some subinterval (¢,,?) and then

P*(fo-ti€) = = f A(s)eoM*(s, £; €) ds + 1, M‘(to, ;€)
=1 f, :A(s)eoM“(s,t;z)ds+ 1 J; “N(s)eoM* (s, 1; € ds+ 1, M*(1y., 15 )

~ l ! M
~ 1 ft .A(s)eoM"‘(s,t,e)ds.

Define an /,-valued process ry(z;€) as ry(z;€) = p*(t,,7;€) — [p§(£) + - - - + €"p*(?)].
By (8.2), we see that r¥(¢; €) solves the equation

e 2 r3(15€) = p*(t0, 5 A*(?) + M1)eg
—[e%pg(t)+ cee e —p,, ,(t)] e+l dp:(t)
=r (oA ) — et 4 A0
and by Duhamel’s principle

e = -—e"j;'%p:(s)M‘(s,t; €)ds+ (e, —p3(to) — -+ — €"Pr(L)))M* (4, t;€)
{H

~—en (' d s * g
o~ e[odgp,,(s)M (s, 1;€)ds

= O(€").

Therefore r*(t;¢) = e"*'p,,+,(t)+ r*, (1;€) = O(e"*") and so with respect to the /,
norm, p*(ty,1;€) =pJ(t) + - - - + €"p*(¢) + O(e"*") which proves the theorem. 8

9. Time reversal formulas. For all s belonging to (¢,,¢), define operators M* and
A* as follows

M*(s,t;€) = M*(1o,55€)7,  M*(t,5;€) = M*(s,1;6)7,  A*(s) = A*(s).
By these definitions, M* satisfies
—€ % l\?l‘(s, ly;€) = —i*(s)lﬁ“'(s, Iy; €), -€ _8__ 1\71‘( ,5;€) = 1\71"( L5, e).i"(s).

M* can be viewed as an evolution operator just like M* except that it evolves
backwards in time. Also, A* = yR + AL — (A + w] so, in addition to a time reversal,
the roles of A and p are switched.

Now define a process O(¢, fy; €) that starts with an initial load of zero at time ¢, and
progresses backwards in time to time ¢,. Corresponding to Q(t 10:€), p*(2,24; €) can be
written down as

B*(t1g:€) = -:- £  w(5)eoM* (s, 1o; €) ds.
(1]
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Taking transposes, and using M* gives

P (8t e)T= 1 f‘M“(to,s; €)p(s)ed ds.
€ Jig
Proor oF THEOREM 3.2. We first derive the time reversal formula for E( Q(1,,¢; €)).

E(Q(ty,1;€)) = .:. f‘ :}\(s)eoM“(s,t; )17 ds+ 1, M*(1o,1;€)17
= %ﬂ)\(s)eo[l + —i—j:M‘(s,r; c)A*(r)dr]les
+f, |1+ lf’M*(zo,s;e)A*(s)dg 17
o € Jy
1 L T
== | ANs)ds+ = 1A*(s)M*(s,r; d
€J;o(s) ezj;jt; (5)M*(s,r; €)eg dsdr
+ny— %f,,ojt‘tM‘(to,s;c)p(s)eg.ds
0

= ¢ [I0) = w(e))ds+ L [1M2(to,rs Ou(rrefar

€

+ng— ‘l‘fno];‘M‘(to T e)egds
0

= %f[?\(ﬂ — p(s) ] ds+ [p*(t, 00 )y + mo— 1, - B* (. 105 o7
]

since f, - p*(2, fo; o7 = E(O(t, 15 €) A ng). The rest follows.
For Var( Q(#,,1; €)), use the differential formulas for E( Q(t,,¢; €)) and Var( Q(t,¢;
¢)), namely (3.1). By what we have derived so far and (3.1), we can say that

L E(G(110:9) V o) = (1) Polf0: 1€). (91)

Apply /91 to the proposed time reversal formulas for the variance. Eliminating terms
involving O via (9.1) and (3.3) will reduce this expression to the right-hand side of
(€d/31)Var( Q(1,, t; €)). One sees that this formula then satisfies the differential equa-
tion for the variance. It only remains to check that at ¢ = ,, the expression is zero
since Var( Q(fo,fo;€)) = 0. ¥

10. Stochastic dominance. Recall that a one-dimensional process Q,(¢) is stochas-
tically dominated by a process Q,(?) if, for all real numbers x and #, Pr{ 0,(¥) > x}
< Pr{ Q,(¢) > x)}. This type of ordering is very compatible with Markov processes as
demonstrated in Kirstein, Franken, and Stoyan [4). For comparing two M(t)/M(t)/1
processes, a simple criterion can be established.

THEOREM 10.1. For A[(-) S A[(+) and p\(-) > py(+) on (15,1), we have p}(to.1;€)
<pitg, 13 €).

Before proving this theorem, we shall need two lemmas

Lemma 10.2.  With respect to A(t) as defined in §0, define M(¢y, t; €) as M*(t,,1;€) is
defined with respect to A*(z) in (0.5). If we think of (1 L)™', in the sense of an
unbounded operator, then (1 — L)M(f, t; eXI — L)™' > 0.
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Proor. It is clear that I~ L)L(I— L) '=L and (- L)JII - L) '=1 Just as
with A*, A can be written in terms of the right and left shift operators as A = AR +
gL — AI — pLR. It then follows that

(I-LAI-L) '=AI-LYR-HI-L) "+ pd - L)L -LR)A-L)"'
= MI - L)R(I - Ly(I - lj)jf— p(I—-L)LRA-L)I-L)™"
=A(I-L)R - p(I - L)LR
=AR + pL’R — (A + p)LR
=AR + pL’R + (A + p)(I— LR) — (A + p)LL

Therefore _
(I-L)exp(A)(I - L)'= e"**Mexp(AR + pL’R + (A + p)(I - LR)) > 0

since I — LR > 0. In a similar fashion to M*, M(#,,¢;¢) is the limit of products of
exponentials like exp(A) and so the rest holds. #

LemMA 10.3.  Given My(#,,t; €) and My(1,, ¢; €), we can say that

M,(15,5,€) — My(25,1€) = 1 'Mz(to,s;e)[Az(s) - A,(s)]M,(s,t;c)ds.
eJy,

PrOOF. We merely notice that
€ 5% M,(ty,5; )M (5, 1; €) = My(to,5; €)[ Agy(s) — Ay(5) [M (s, 15 €)
and then we integrate. @

ProoF oF THEOREM 10.1. First observe that A(I— L)™' = AR — uLR. By Lemma
10.2

My(1,, €)1 — L)™'~ M(15, ;)1 - L)

- %L’Mz(to,s; I[As)A~L)"'A ()T - L)' |~ DMy(s, 590~ L)' ds

= L [M3(10,5:0[((5) = MR = (1) = m(LR]

X (1= L)My(s,; €)(I — L)' ds.

All of these expressions are positive so M,(#, % €XI— L)™' < Mz(to,t;c)(l-L)"'.
Applying ¢, to both sides gives py(to,t; €I — L)™' < py(t,1;€)I — L)™' By the
definition of p*, pf(2,,¢; €) < p3(#,; €) and so we are done. @

11. Appendix. We now calculate the zeroth and the first order terms of the
distribution, mean, and variance for the undersaturated region. By §8, we see that it i
sufficient to determine p3(¢) and p¥(¢) which solve

BOAY) = ~Meo,  PHOA) = S 050)

We shall derive them using generating functions.
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If g is an /;-vector and g(o) is its generating function, then

-- og(e) — g(1)
(8(A*) " No) = ek
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Let p3(t,0) (p7(1,0)) be the generating function of p§(r) (p¥(?)). Since pF(r) = —A(?)

e,A*(1)” !, we have

o—1

P80 = =MD = N@DoyT =)

.0
1 = p(t)o

= 2 p(t)n-i-lon_

n=0

It follows that
()
31 P3(80) (1 - p(t)o)?
and so if p{(#) = (dpd(t)/dt)A*(¢)~", we then have

.. PO PO
. (1-p(no)’ (1-p(1))’
PH50) = i H ~ o)1 = 0)

-e() ',
40) (1“ (‘)")

TR -p0) (—ee)1-o)

(1) o(1 = p(1))* — 1+ 2p(t)0 — p(1)’0’

" w1 - o))’ (1= p(t)o)’(1 - o)

(1) = p(1)’e* + (1 + p(1)*)o — 1
r((1-p0)  (1=p(o)’(1 - o)

P p(t)’s — 1
s(1)(1=p(0))* (1-p(1)0)’

(1) ® ran+1) (n+1)(n+2) "
‘W'E[—T‘“W’“_—“T——}P

s(1(1 = p(1))" #=0
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Recall that p, (15, 1,€) = p¥_ (1o, t;€) — p(ty, 1;, €) Where p* (15, 1,¢) = 1. We then have

Pa(to-1€) = p(1)"— p(1)"*"
() a(n—-1 n(n+1) _n(n+1)
+e€ p,(l)(l -—p(t))2 [ p) t 3 5 t)

wp(;)] o()"” 14 o(c)

= (1-p(2))p(?)"
p'(1)

e—————— [(MP+n+1
* u(t)(l—p<t>)2[(" Y

B n(n2+ 1) (1 +p(t)2)]p(1)"_l+ 0(62)
(t n(n+1
= (1= p(1)p(1)"+ € ’,’,E,; { R _p(;(),))z e }p(r)"“+ ().

By use of these generating functions we have
E(Q(to,1€)) = p¥(1, 1) + @¥(1,1) + O(€?)

__ k) P 1+e() 2
T=o() 0 (=m0

Moreover, we get

E(Q(to,4€)") = E(Q(to,1:€)) + 2 %”7"(:, H+e- 2% (t,1)+ O(e®)  where

R i
- o (1) oy, 3o~ 1)
b0 ) - oF | (L= pney -0y |
Consequently,
g e’ Bt 1y o P 20()°+30()

3 (1) (1= o))’ e D70 (1 - o(t))’
Squaring our expansion for the mean gives us

B0 P Ao +er))
E(QC.4e)) (=-p(f #O (1-p0) +0(€).
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Finally, combining terms gives us
20y’ o(?) p(t)’
; - 2
L-p)® =0 (1-p(n)
p'(t) —4e(t)’ — 6p(1) + p(1)’ — 1 +2(p(1) + (1)’
€
k(1) (1-p(0))’
o(2) () a0’ +Hap(+1
= —-€
(1-pm) B (1 -p(n)y
Acknowledgements. The author thanks Joseph B. Keller who, as my thesis advisor
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Var( Q(ty,4€)) = (

+ +0(€%)

o(€).
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