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CALCULATING EXIT TIMES FOR SERIES JACKSON NETWORKS

WILLIAM A. MASSEY,* AT&T Bell Laboratories

Abstract

We define a new family of special functions that we call lattice Bessel
functions. They are indexed by the N-dimensional integer lattice such that they
reduce to modified Bessel functions when N =1, and the exponential function
when N = 0. The transition probabilities for an M/M/1 queue going from one
state to another before becoming idle (exiting at 0) can be solved in terms of
modified Bessel functions. In this paper, we use lattice Bessel functions to solve
the analogous problem involving the exit time from the interior of the positive
orthant of the N-dimensional lattice for a series Jackson network with N nodes.
These special functions allow us to derive asymptotic expansions for the taboo
transition probabilities, as well as for the tail of the exit-time distribution.

ASYMPTOTIC EXPANSIONS; GROUP SYMMETRY; BESSEL FUNCTIONS; MULTIDIMEN-
SIONAL RANDOM WALKS; TRANSIENT BEHAVIOUR

1. Introduction

Consider the queue length process for the M/M/1 system with Poisson arrival
rate A and exponential service rate u. We can think of it as the reflecting version
of the following Markov process. Let Z(t) = N, (t)— N, (t)+ n, where N, () and
N, () are independent Poisson processes with intensities A and u respectively.
With N, (0) = N, (0) =0, we have Z(0) = n where n belongs to the set of integers
Z. This process is sometimes called a randomized random walk on Z (see Feller
[1], p. 59).

If n belongs to Z,, the set of non-negative integers, then Z(t) behaves the
same as the M/M/1 queue length process until it hits the zero state. From here,
Z(t) may take on negative values, so its state space will be all of Z. Given this
relationship, we can think of the busy period for an M/M/1 queue as being the
time for an identically initialized Z(t) process to be absorbed at the zero state.
Let p,(m, n) be the transition probability for Z(t) starting at m and terminating
at n, for time ¢t >0and all m and n in Z. For m and n in Z,, we let q,(m,n)be a
similar transition probability from m to n with the additional requirement that
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Calculating exit times for series Jackson networks 227

Z(s) does not equal 0 for 0 = s = ¢. It is well known (see Ledermann and Reuter
[2]) that p,(m,n) and q,(m,n) can be solved explicitly in terms of modified
Bessel functions as

Atn—m)
p.(m,n)=exp(—(A + p)t) (;)s L-m 2t V)

n—m)
q.(m, n)=exp(— (A +p)1) (ﬁ)h (L 2t VAp) = L. Rt VAR)].

In this paper, we shall generalize these two results. Just as these formulas
describe processes associated with the M/M/1 queue length process, we shall
construct analogous processes for the N-node series (or pipeline) Jackson
network. In particular, the analogue to g,(m, n) will be the transition prob-
abilities for such a network before any one of the servers becomes idle.

To generalize the solutions to p,(m, n) and q,(m, n), we need to define a new
class of functions that generalize the notion of a modified Bessel function. Recall
the following formula for modified Bessel functions:

exp (% [x +%]) = ”gz x"L, (y).

For n = (n,"--,ny) € Z™, we say that I(n,y) is a lattice-Bessel function of rank
N if it is defined by the following generating function relation:

X X 1 n nN
exp (ﬁ% [x,+x—j+-~-+—"—+—]) = > xi' o xnI(my).

XN-1 XN n€EZ

From this defining relation follow various properties of lattice-Bessel functions
that we will use in Section 2 and prove in Section 3:

Representations for I(n,y).

Q) ;)N I_: e L: exp l——LN 1 (exp(i0,) + exp(i(6.— 6,)) + - - -
1.1) )
+exp(i(On — On-1)) +exp(— i0n)) — i D, "191] do,--- oy

j=1

( )i+2?'-k+w
© N +
(12) 2 l-l N+1 A .
j=0 k=0 (i+ 2 n‘) !
l=k+1

Symmetry group. Let Gy be the set of matrices that permute the set of
vectors {e;,e;— ey, - -, ex — en_1, — €x}, Where e is the kth unit basis vector of
Z". We then have Gy isomorphic to S.., the group of permutations on N +1
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objects. For all 77 in Aut(Z") we have I(n,- )= I(a(n), ) for all n in Z", if and
only if 77 belongs to Gn. Consequently, Gy is the symmetry group for the rank N
lattice-Bessel functions.

Asymptotics. 1f y—", then

o)~ (1)1 (M52 )L o L)

where n* =(n%,- -, n}) is derived from n by setting n* ==¥_; n,, and B(n*)
equals the quadratic form =} _, byn*n?}, with b; = N for all j, and by = —1 for
j# k.

Consider an N-node series Jackson network with Poisson input rate A and
service rate u; for the ith exponential server. Our analogue to Z(t) will be such
that the above process is a reflecting version of it. If N, (¢), N,,(), - - -, N, (t) are
N + 1 independent Poisson processes, and Z(0) = (n,, - - -, ny), we define Z(t) to
be

(NA (t)_ Nu:(‘)-}' n, Nu:(‘)_ Nuz(‘)+ n--, N;m—:(t)- NMN(I)+ nN)-

Let a and vy be respectively the arithmetic and geometric means of A, w,, - - -
and un, or

bl

N
A+ 21 M N I(N+1)
—_——i= = . X
a N+l > Y (A ll:! [.L,) .
Now define B, - -, Bn SO that
= B ... =B L
A Bl% [ 31 ﬁl Y, s MN-1 BN—] Ys MN ﬁN Y-

We then get 8, =A/y and B; = A, - - - /¥y’ for j=2,---,N. For n € Z", let
B" =II'., B7. We can now write the transient behavior for Z(t) compactly.

Theorem 1.1. If p,(m,n)=Pr{Z(t)=n | Z(0)=m} for all m and n in Z",
then

p:(m,n)=exp(— (N +1at)B""" - I(n — m, (N + 1)yt).

If Z(0) equals an element in the interior of Z%, where each component is
strictly positive, then let T equal the first time that Z(t) has a zero component.
We then call T a random stopping time. The joint distribution of Z(t) with the
event {T >t} represents a new Markov process which acts like Z(t) but is
absorbed when it touches the boundary of Z}. In queueing theoretic terms, T
equals the time until one of the queues becomes empty in a Jackson series
network.
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Theorem 1.2. Ifq(m,n)=Pr{Z(t)=n, T>t l Z(0)=m} for all m and n in
Z%, then

(13)  q(m,n)=exp(—(N+1)at)p"™ "GEGN (= 1)"I(n — w(m),(N + 1)y1),

where (—1)" is the sign of @, viewed as a permutation.

Given p,(m,n) and q,(m, n) in terms of lattice-Bessel functions, we can now
derive asymptotic formulas for them.

Theorem 1.3. Fort 1, we have

_ pnr—m e’ﬂ)_(_ (N+ 1)(& _ Y)t)
pi(m,n)=p VN + 12 my)™"

|1+ Gy 2y )i+ 0]

— _pgr=xp(—(N+1)(a = y))
4(m )= =B SN T )t Ryt ™

x[ S (~1)yB(n* — m(m)*)+ o(%)]

wEGN

Moreover, if B;: <1 for all i, then

PH{T>1t|Z0)=m}=0 (exp(—(l‘JtJ\r/lt_)N(a - ‘y)t)) .

2. Calculating transition probabilities

Let 1,(Z) be the Banach space of doubly infinite sequences that are absolutely
summable. We define e, for n € Z to be the nth unit basis vector for [,(Z).
Every sequence {- - -, a_,, ao, a,* * -} can then be written as 2,7 a.e.. On [,(Z),
we define right and left shift operators which we denote as R and L respectively.
They can be defined in terms of the e,’s where e,R = e,., and ¢,L = e,_,. It then
follows that RL=LR=1so R'=1L.

The joint distribution for Z(t) can be encoded as a vector belonging to
1,(Z)™, then N-fold tensor product of I,(Z) with itself. A basis for this space is
the set of ®?’=, e,’s where n = (n,, - - -, ny) ranges over all Z". Given m in Z",
we define p., (t) to be an L,(Z)™-vector that represents the distribution of Z(t)
given that Z(0) = m, or

P-()= 2 p(mn)e,@ Qe

nEZ

We let P(t) be the operator that maps ®,'f., e, into p,. (). Thus P(t) encodes all
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of the transition probabilities for Z(t). Let R; and L; be operators acting on
I(ZY™ where R. =I®---QR Q- - - ® I (R occurring only in the ith position)
and L; is defined similarly. The forward and backward equations for Z(t) can
then be written compactly as

% P(1)= P(1)A = AP(1)
with P(0)=1I, and
N
A=AR + LR+ + pn_Ln_ Ry + pnLy — (A +> u.-) I

For more details on this tensor representation, see [3].

Proof of Theorem 1.1. Given the definition of «, vy, and the B8;’s we have
1
Bn
By the forward (or backward) equations we have P(t)=exp(tA), and L, = R;",
so using the generating function relation gives us

P(t)=exp (: ['y (B.R, 4o +B—1N LN) ~(N+ 1)al]>

A ='Y(BIR1+%L1R2+"'+ LN)—(N+1)aI.
1

=exp(— (N + 1)at)exp ( 1\1,\1++11 t(B,Rl e +B—1N Ln))

= ZNexp(—(N+ Dat)B"I(n, (N +1)yt)- f[ R}

nez
and the formula for p,(m, n) follows.
Proof of Theorem 1.2. We shall define g, (m, n) by (1.3) and then show that it
is the desired probability by being the unique solution to the forward and

backward equations. Using Theorem 1.2 and the symmetry group for lattice-
Bessel functions, we have four representations for q,(m, n):

2.1)  q(mn)=exp(—(N+1at)B"™ "EZGN(— 1)7I(n — m(m), (N + 1)yt)

22) = exp(— (N + 1)ar)p"™ “;;N(—l)'l(a(n)—m,(N+1)w)
23) =“§;~(—1)"B""‘"‘p: (w(m), n)
24) = 2 (U8 p (m,m(n))

By (2.1) and (2.2) we have q,(m,n)=0 whenever m or n belongs to the
boundary of Z7. This follows from the fact that any such vector is left invariant
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by some transposition (an odd order 2 element). If 7 permutes only e; — ¢;-, and
e..; — e (with the obvious modifications for i =1 or N) then 7(n)=n if n, =0,
since in general
N N
n= (21 ni) e+ (22 ni) (e;—e)+---+nn(en —enoy).

For every odd permutation 7r in Gy, we can then choose a unique even one, 7’
such that 7r(n) = #'(n). Since (—1)" +(—1)" =0, we get g, (m, n) =0 for such
an n (or m). By (2.3), it is immediate that (d/dt)Q, = Q.A and (2.4) gives us
(d/dt)Q. = AQ.. Therefore, the q,(m, n) solve the same forward and backward
equations as P,, where ¢,(m, n) =0 whenever n or m is on the boundary of Z%.
Hence the g,(m,n) for m and n in ZY solve the same differential difference
equations as Pr{Z(t)=n, T>1t |Z(O) = m}. By uniqueness, we have equality.

Proof of Theorem 1.3. The first two statements follow immediately from
Theorems 1.1 and 1.2 by using the asymptotic properties of lattice-Bessel
functions. For the last statement, we have

Pr{T>t|ZO0)=m}= 3 q.(mn)

_ n. A fexp(=(N+1D)(a—y)t)
_"253 O( VY )

and 2, B" =TI, 250 B <= if and only if B; <1 for all i.

We conclude by noting that for N =1, (N +1)(a —y)=A + p —2V Au which
is the relaxation parameter for the M/M/1 queue.

3. Properties of lattice-Bessel functions

Proposition 3.1. We have the following representations for I(n,y):

I0,Y) = Gy L o L exp [N‘yﬁ (exp(i6y) + exp(i(6, — 6,))

N
+- o +exp(—ibn)—i D, n,~0,-] de, - - - déy
j=1

( x )i+2ﬁkﬂm
S 1 \N+1
Imy)=> 11 N

L
I=k+1

Proof. The integral representation follows immediately from employing the
generating function definition of I(nm,y), setting x; =exp(i6;), and using the
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orthogonality properties of the functions {exp(in;6;)},c> when integrated over
[—m, )

For deriving the power series representation, we adopt the convention that
1/n! =0 when n is negative. This will allow us not to be concerned with the
range of summation in certain cases. For example, by this convention we have
S ol/n!=%,c21/n!.

CXP(——X—<xl+...+i))=.w (—Y——)i.l(x,+...+i)’

N+1 XN S \N+1/ j! XN
© j m;—m - +
=2( y )I 2 xll 2."x:N’"NI
S\N+1 mitSmne=i M myg!
N _ .
_ z i ( y ); +2k=|m1(x;"1 M. ‘x:N Je
=0 N+ m1!"'mN!j.!

y o+ e
Jet

" nN - = (N+1

= 2 xl CEEERY xN z ———N—_
(n1,-.nN)EZ «=0 k=1 (]‘ + 2 nl) !

I=k

z

For the last step, notice that if n,=m,—m,,n,=m,—m,,---, and ny =
—j., then for all j,m; = j.+Z{_; n,.

Proposition 32. Define Gy ={m | = € Aut(Z") and I(w(n), )= I(n,") for
all n € Z"} then Gy = Sn.., the group of permutations on N + 1 objects.

Proof. Let e; be the ith unit vector in Z". We prove this result by showing
that each element in Gy is uniquely defined by a permutation on the ‘N +1
objects’ {e;,e;— €, -, exn — en_1, — en}.

If x" =TI, x", then

XN i

+

. =x"+xT+- +x‘”""‘+x“~—x+ + -+ .
G f(x) PR

Let 5, =x"“for j=1,---,N then " = x™™. We then have f(£) = f(x) if and
only if 7 permutes the set {e,,e;—e,," - -, — ex}. Moreover,

exp (L ) =exp (55 1)
2 #I(ny)

neZ

2 x""I(n,y)

nezM

> x"I(m'(n),y)

neZ
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and so I(n,-)=1I(s"'(n),-) for all n in Z" and all &' (or #) in Gx.

Deriving the asymptotic expansion for I(n, y) as y — " would take us too far
afield from the main theme of this paper. This will be done in a forthcoming
paper (see [4]). For now, we prove a weaker result.

Proposition 3.4.

N N2
tim Y2 [(n, y) = —— (N—“) .

3.2) N VN+1\ 27
Proof. Let f be as defined above in (3.1). If 8 =(0,,---,6y), dO=
d6,- - - dby, and exp(i@) = (e, - -, "), we can rewrite (1.1) as

I(n,y)=ﬁj_: I_: exp <N+1f(exp(10))—m 0) de.

By (1.2), it is clear that I(n,y) is a real-valued function for real y, so
S S A
I(n’ Y) - (2,",)N J_" J_" €xp (N +1 Re(f(exp('o))))

X cos (ﬁ+Ll Im(f(exp(i0)))— n - o) de.

For each natural number k, take 8 to represent some homogeneous multi-
nomial of degree k. If we define g(0) to equal

8(0)=:[61+(6.— 6.y +---+63],
we can expand f(exp(i@)) as follows:
Re(f(exp(i@))) = N +1—g(0)+ O(8*)
Im(f(exp(i0))) = O(8°).
Letting u; = 6, \Vy for all j, and making the above substitutions, we get

' G| (e o(£9))
("’y)_(zw\/})” VR exp NHg(u)
(3)
Xcos( ( ) "—'_.u>d,
vy iy
From this, if follows that

Now g(u) can be written as the quadratic form X} _; cxtyjth, where C =
{ci | 1=j, k = N} equals
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2 j=k
Cik = -1 ‘] - k ’ =1
0 otherwise.

C is a positive definite, symmetric matrix. This means that C can be diagonal-
ized by a unitary matrix. If D is that diagonal matrix, and d,,---,dy are its
non-zero (diagonal) entries, we get

Joo [ omliisw) au= [ o (g wew) au
[: E; exp (2(N__-|1~1) ﬁDﬁT) dii

,l:[lf exP(Z(N+1) )du,
,Ij('ITN-i- )

27(N+ D]

" Ve (0) t(C)

Expanding by minors, we can show by induction that det(C) = N + 1. Making
this substitution and dividing by 2#)" gives us (3.2).

From this proposition, it follows that as ¢t — ",

—(N+1D(a—9y))
p.(m,n) NI
and since the limit in (3.2) is independent of the index n, we also have

n(m,n)=o (exp(—(N\J;?ll_v)(a - 7)0) .

These asymptotics clearly suggest the stronger results of Theorem 1.3.
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