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STOCHASTIC ORDERINGS FOR MARKOV PROCESSES ON
PARTIALLY ORDERED SPACES*

WILLIAM A. MASSEY
AT & T Bell Laboratories
The purpose of this paper is to develop a unified theory of stochastic ordering for Markov
processes on countable partially ordered state spaces. When sach a space is not totally ordered,
it can induce a wide range of stochastic orderings, none of which are equivalent to sample path
comparisons. Similar comparison theorems are also developed for non-Markov processes that
are functions of Markov processes and for time-inhomogencous Markov processes. Such
alternative orderings can be quite useful when analyzing multi-dimensional stochastic models
such as queueing networks.

1. Introduction. For most areas of applied probability, the goal of explicitly
calculating a probability distribution is rarely attainable. This makes alternative
methods of analysis attractive. One approach is the notion of stochastic dominance.
This is a partial ordering on probability distributions that allows one to define when
one distribution is larger than another. So given an unknown distribution, it may be
possible to construct a known upper or lower bound for it. For a broad perspective of
the theory and utility of stochastic ordering, we cite Bawa [1] and Stoyan [22] as
references.

The most widely studied type of stochastic dominance can be illustrated by the
following simple example. Let X and Y be two real-valued random variables. We say
that X dominates Y if the cumulative distribution function of X at each point is less
than the same function for Y. Now this distribution of X can be duplicated by
applying the inverse of the distribution function to a random variable U having the
uniform distribution on [0, 1]. Call this random variable X. In a similar fashion, we can
construct ¥. Due to the manner of the construction, we have X > ¥ a.e. if we use the
same U. This says that we have a very strong stochastic ordering. We need only order
the distributions of two random variables, and get a sample path ordering between
their duplicates. Moreover, this characterization is necessary and sufficient. This
concept achieved its fullest generalization in Kamae, Krengel, and O’Brien [8] for
comparing stochastic processes on partially ordered Polish spaces. In order to do this,
it was necessary to dispense with the notion of comparing distribution functions and
instead compare measures of increasing sets. In practice, two processes are compared
in this way by establishing the sample path comparisons. Roughly, one would take a
common object like U, modify it to get the two different processes, and show that the
result of modifying one is consistently less than the modification of the other.

When we restrict ourselves to time homogeneous Markov processes, a related
problem arises. In practice, such a process is usually defined only in terms of its
infinitesimal generator and initial distribution. Its transient distribution and even
steady state distribution (when it exists) may be unknowable. So useful comparison
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theorems are ones that only use the generators and initial distributions of the given
Markov processes. Results of this nature were first developed in Kalmykov [6]. Daley
[4] identified the critical role that monotone Markov processes play in such theorems.
He also gave necessary and sufficient conditions for monotonicity in terms of the
transition functions on totally ordered spaces. Kirsten [11] and Keilson and Kester [9]
gave many examples of monotone Markov processes and derived other properties for
them such as whether a given process is stochastically increasing in time. This
approach is summarized in Chapter 4 of Stoyan [22]. Similar results are derived for
semi-Markov processes in Sonderman [21).

The purpose of this paper is first to show that when a space is partially ordered, it
admits a wide variety of stochastic orderings obtained by merely restricting the type of
increasing sets used. Of these, only the strongest one may be equivalent to sample path
orderings. For all these orderings, the second goal is to develop a unified comparison
theory for Markov processes on countable partially ordered spaces in the spirit of
Daley, Kalmykov, Keilson, Kester and many others. Such a theory would make it
possible to establish a stochastic ordering between two Markov processes where no
sample path comparison exists. This is indeed the case of the Jackson network as
pointed out in [12] and [13].

In §2, we define a stochastic order and identify three natural candidates for
orderings, the strong, weak, and weak*. §3 introduces the notion of a monotone
Markov process and the main comparison theorems. Methods for constructing these
monotone processes will be developed in §4. In §5 we use Strassen’s theorem to
strengthen the previous results for strong orderings. §6 gives deeper results for weak
orderings. In §7, we extend all of these comparison results to time-inhomogeneous
Markov processes. We illustrate in §8, the utility of these many orderings by interpret-
ing the results of [12], [13], and Whitt [26], as stochastic comparisons of various
Jackson networks.

2. Stochastic orderings. Given a countable, partially ordered space E with the
discrete topology, let S(E)-be a family of subsets of E that includes E itself and the
empty set. We can then induce a transitive relation for probability measures on E. If P
and Q are two such measures, we say that P €, Q whenever P(I') € Q(T") forall T
in S(E).

DerFINITION 2.1. We say that €, is a stochastic ordering on E if

(i) The relation <, is a partial order on the space of probability measures.

(ii) Let 8, be the point mass measure on E for some x in E. For all x and y in E,
x<yifand onlyif 8, <, §,.

As we stated before, <, is already a transitive relation. Condition (i) is then
equivalent to requiring that a probability distribution be uniquely determined by its
measure on the sets in S(E). If X and Y are two E-valued random variables, we will
say that X <, Y whenever their induced measures can be so ordered by <«,.
Condition (ii) is then seen to be a compatibility condition where x £ y bolds if and
only if x €, y.

For any subset I' of E, we borrow the following notation from Kamae and Krengel
71

I''={yly>xforsomexinT}, T*={y|y<xforsomexinT}.

DEeFINITION 2.2. A subset T' of E is an increasing set if T =T'. A family of
increasing sets is said to be strongly separating if for all x £ y, the family contains a set
I' such that x € T and y € I'. The concept of a determining class was used in O’Brien
{17] to denote a set of functions where we can recover a probability measure by its
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integral against these functions. Weadaptthm nomm to a family of sets byusmg -their
indicator functions.

PROPOSITION 2.3. S(E) induces a stacﬁastzc order if and only if $( E)isa strongly
separating famtly of increasing sets that form a determmmg class

Proor. Let <, beastaﬁasﬁcordennng Poranysnbset Tof E, 6,,(1‘) =1
lfandm:}yzixel‘ otherwise §,(I') = 0. By condition (i) of Definition 2.1, we have
x <y and x €I implying that' y € T' whenever T. belongs to #(£). This holds
because 8,(T') < §,(T') in this case. Since x € y is equivalent t0 §, <, 8, then'x £y
holdsxfandoniyszorme[‘mJ(E),wchavc&(l‘)>6(1‘).ltthnnfollom that
x€Tland yeT. SoJ(E)xsastmnglysepauungfannlyofsets ‘

Conversely, if $(E) is a determining class then any probability d:smblmon is
uniquely determined by the sets of #(£). This makes <, . a partial order on the space
of probability measures on E. Now let x € E. Since 8,(I') equaling 0 or 1 is
equivalent to x & T or x € I respectively, we have 8, <, 8, whenever x < y. Now if
8. <, 8, we must have x < y. Otherwise x £ y, and by the strong separation
comimon, there exists I’ € $(E) such that x €T and y € I ’Ihshowevugwesns
1 =8,(T) < 8,(T') = 0 which is a contradiction. =

Wenowdeﬁnesomedxsﬂngmshedmcreasmgset&l’oranyxmi we have
(x) = {x} 7, {(x)s = E\ {x)}*. This allows us to specify three candidates for sto-

DEerFINITION 2.4. Let S (E), S, (E), and . wk.(E),denoter&speeﬁvdy,.thesmng
weak, and weak* orderings where :

Ji,(E)u{allincreasingsetsinE} £, (E)= {<x>:xc—:E}u{E ra}
S (E) = ((x)ex €E} U {E, 8}.

We will denote these orderings respectively as <, , <, ., and. <,4». The strong
ordering is the one that is equivalent to a sample path comparison of the random
variables. Weak orderings are equivalent to comparing tail distribution functions and
weak* orderings serve the same role for cumulative distribution functions. Examples of
their usefulness can be found in Tong [24] and Stoyan [22]. The similarity of the
nomenclature above to the various types of convergence on linear topological spaces is
intentional. Just as weaker topologies ate defined by restricting the family of open sets
used, we can define stothastic orderings weaker than the strong one by restricting the
family of increasing sets used. Continuing the analogy, recall that for finite dimen-

sional spaces, all topolagies are equivalent. Tetajly ordered spaces fill the cotrespand
ing role for stochastic orderings.

-PROPOSITION 2.5. I‘f E isa toraily o)dered space then aIt of its stodmtic ordeﬁ#gs
are eq:dvalem ‘ :

' ProOF. Let <, beastochastxc ordenng Wevnll show that forall X, thcte e:ustsa
sequence of increasing sets T, in S(E) such that .. .. ...,

P(()) = fim P(T,). (251)

Convasely, gwen any Iin J(E) tbcreenstsasequmce {y,,)m E such that
) f e, r‘(I“ ; P(r)" h@ g‘((:)ﬁ})* . ;-mi AR 2 P T A é'g‘;)

et St - H
!" Y 0 Lednl T fﬁuz e

From fm)mdﬁmw*wm hw P <y Qﬁwmﬁydrgwk [ Tt SR A



STOCHASTIC ORDERING FOR MARKOV PROCESSES 353

E is a countably infinite set, so for any x in E, there exists an increasing sequence
{x,} such that x, < x for all n, and y < x implies that y < x, for some integer k.
Merely take { z,, z,,... } to be an-enumeration of all the elements strictly less than x.
Now let x, = max(z,,..., z,). By recursion, we can construct the following sequence
of sets (T, } in F(E) where (x) =(1>_.T, as follows: .

[n = 1]. Let T, be an increasing set in F(£) such that x, € I, but x € I,.

[n—>n+ 1} Let we1 = Ly if x, ., & T,. Otherwise, choose a new set in J(E) such
that x,., ¢ T,,,and x € I',,Jrl

By Proposition 2.3, we can always construct such a sequence. Since E is a totally
ordered space, then (T, } is a decreasing chain of sets in F(E) with (x) = N_,T,, so
P((x)) = lim,_, ,P(T,).

If T belongs to F(E), then let {x,} be an enumeration of all the elements in T.
Since I' is an increasing set, then I’ = f_l(x,,) and s0 P(T') = lim, _, . PUs_,(x)-
But E is totally ordered, so there exists a unmique y, for x;,...,x, such that
Yy = min(x,,..., x,) and {y,) = Uk_ {x), hence P(T) =lim, _, ,P({y,)) and this
finishes the proof ]

We now give a familiar example of a space where the various types of stochastic
orderings can be quite distinct. 4

EXAMPLE 2.6. Let E = Z2, the space of ordered pairs of nonnegative integers. We
say that (m,, m,) < (n, n,) if m; < n, and m, < n,. Define P and Q as P(0,1) =
P(1,0) = } and Q(1,1) = Q(0,0) = .

We then have P <, Q but Q <,,+ P so there can be no strong ordering between
P and Q. Moreover, increasing functions on E can behave badly with respect to the
wrong stochastic ordering.

EXAMPLE 2.7. Let E = Z2, with the same partial ordering as in Example 2.6. Let f
map Z2 into Z2 where

(m-1,n+1) ifm>0,
,f(m,7)= {(m,n) ifm=0.

Let X and Y be two Z2-valued random variables whose induced measures on Z2
are P and Q as given in Example 2.6. We then have X <, Y but f(X) £, f(Y)
despite the fact that f is an increasing function. We can remedy this situation in the

following way.

DEFINITION 2.8. Let E and F be two partlaliy ordered spaces, with S(E) and
F(F) defining their respective stochastic orderings, We say that a function f from E
to F is an isotone mapping from S(E) to F(F)if fY(f(F)) c F(E).If E= F and
f~YF(E)) C F(E), we say that f is F(E )-isotone.

PROPOSITION 29. Iffisan isotone mapping frbm F(E) to #(F), then for any two
E-valued random vanables X and Y we have
X'i.t Y=*f(X) <y ().

Any such isotone mapping is then an mcreasmg function.
“PROOK. Let T belong to J(F). Now f-X(T') belongs 16 S(E), 50

Pr{f(X)eT} =Pe{XefYI)}.<Pr{Yef X))} =P f(Y)eT)

@me me“pmf_"m.'-; IR T PN
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3. Comparison theorems. Any probability measure P on E is uniquely char-
acterized by its value on all of the singleton sets {x} for x € E which we denote as
P(x). We can then alternatively view P as a function that maps E into the real line or
more precisely, the closed interval [0,1]. Let /,(E) denote the Banach space of all
absolutely summable real valued functions on E. Now define e, for each x in E to be
the indicator function for the singleton set {x}. All the e,’s comprise a basis for /,(E).
We can then encode every measure P on E as a veetor p in /,( E) where

p= X P(x)e,. (3.0)

x€E

Notice that the /;-norm of p is the sum of the absolute values of the “e, -based”
coefficients, which equals 1 in this case.

Let I ( E) equal the Banach space of bounded real-valued functionson E. If I is a
subset of E, let 1 be its indicator function. All the 1,’s comprise an uncountable basis
for I (E). We can then define the natural inner product between elements in /,(E)
and /_(E) by setting

=/1, x€T,
€ lr_{O, xerl.

If we apply 1y to p in (3.1), we get p - 1 = P(T'). So now the statement P <, Q is
equivalent to
p-lr<q-1 forallTin S(E)
where p and q are the /,( E) representations of P and Q.
The spaces /,(E) and bounded linear operators on /,(E) admit natural partial
orderings through the definition of positive vectors (see [15, p. 179]). We will use < to

denote such orderings. We can also endow these spaces with a partial ordering induced
by S(E).

ProOPOSITION 3.1. Let S(E) be a stochastic ordering on E, then the following
relations are partial orders:
(i) For f and g in I,(E) we say that f <, g whenever

f'lrgg‘lr foralII'mJ(E).

(ii) If A and B are two bounded linear operators on I,(E), we say that A <, B
ided ’
prov

Proor. For f and g in /|(E), f <, g is a transitive relation. It then remains to
show thatf €, gandg <, fimplyf = g Givenf €, gand g <, f, we have
(f—g)-1;=0 forall T in S(E).

The case I' = E says that all of the components of f — g sum to zero. This means that
there are two positive /;,(E)-vectorsh, and h_, wheref — g = h, — h_. We then have

b, -1, =h_-1; forallTin S(E).
Sinceh, - 1;=h_- 1, we can scale h, and h_ so that they both represent probabil-
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ity distributions. If P_ is the measure corresponding to h,, and P_ to h_, then we
have P, <, P_ and P_<, P,. But S(E) is a stochastic order so P, = P_, then
h,=h_, and finallyf =g

For ordering defined in (ii), we note that A - 1. < B - 1 holds in /_( E) if and only
if fA - 17 < fB - 1 for all positive f in /,(E). But now we have the same relation
between fA and fB in /,(E) that was defined in (i). By the previous arguments,
fA = B for all positive f in /,(E). Since the e,’s are positive and are a basis for /;(E),
wehave A=B. n

Given a stochastic process { X(¢)|t > 0} on E, let p(z) be the /,(E)-vector repre-
senting the probability distribution of X(z). Whenever { X(¢)|t > 0} is a conservative
Markov process that is pure jump (right continuous sample paths), p(¢) solves a simple
differential equation in /,( E),

Zp(0) = p(DA

where A is a linear operator that acts on at least some dense subspace of /;( E). This is
called the forward equation for { X(¢)|t > 0} and A is the infinitesimal generator of the
process. Since any contraction semigroup is the strong operator limit of similar
semigroups with bounded generators, we will assume A to be a bounded operator
acting on /;(E). Such an A is easily characterized by the following:

1. Al =0.

2. The off-diagonal entries of A are positive.
Such generators are also called uniformizable (see Keilson and Kester [9]). If A > 0 is
greater than the absolute value of any diagonal term (guaranteed if A > |A|;), then
P,(A) = I + A/A is a stochastic matrix and we can expand exp(fA) as

o~ n
(i) = £ Ml ay

n=0

DEFINITION 3.2. A is the generator for an S( E)-monotone Markov process if for all
probability vectors p and q in /,(E), we have

P <, q implies that pexp(sA) <, qexp(¢A).

LEMMA 3.3. If A is the generator for an $(E)-monotone Markov process, then for {
and g in I,(E) with f - 1z =g - 1 we have

f<, g impliesthat fexp(tA) <, gexp(fA).
Similarly, if B and C are bounded operators on I,(E) with Bl = Clp, then
B <, C impliesthat Bexp(tA) <, Cexp(7A).

Proor. The argument is very much like the one for Proposition 3.1.

THeOREM 3.4. Let X(t) and Y(t) be two Markov processes with state space E, where
X(¢) or Y(t) is S(E)-monotone. If A and B are their respective generators, X(0) <,
Y(0), and A <, B, then X(1) <, Y(t) forallt > 0.

PrOOF. Let p be the /;,( E) representation for the distribution of X(0), and q be the
same for ¥(0). In operator notation, we want to prove that p <, q implies that

pexp(rA) <, qexp(sB).



356 : WILLIAM A MASSEY

Assume that B is the generator for an #( E )-monotone process, then it suffices to show
that pexp(rA) <, pexp(¢zB) for all probability vectors p. This is equivalent to assert-
ing that exp(tA) <, exp(zB). This, in turn, is equivalent to 0 <, :exp(tB) — exp(rA),
but exp(tB) — exp(tA), can be rewritten as follows . .

exp(1B) - exp(1A) = [' 2 exp((t - s)A)exp(sB) ds
= [lexp((: - $)A)(B — A)exp(sB) ds.

Now our problem reduces to showing that
0 <, exp((z — s)A)(B — A)exp(sB)

for all s in [0, ¢].

Since exp((¢ — s)A) maps positive vectors into positive -vectors if and only if the
off-diagonal terms of A .are positive (see Keilson and Kester {9]), then we need only
show that for all 7 > 0,.0 <, (B — A)exp(#B). By Lemma 3.3, we arc done. &

Let E and F be two partially ordered spaces. If f is a function mapping £ into F,
then let ®(f) be the following bounded operator that maps /,( E) into {,(F):

er(f) = 'ef(x)'

We will use this operator in the next theorem that gives us a means to compare a
Markov process with the functional of another Markov process. To this extent, coupled
with Proposition 2.9, we acquire a comparison technique for non-Markov processes
also.

THEOREM 3.5. Let X(t) and Y(t) be Markov processes with state spaces E’ and E
respectively, having corresponding generators A and B. If Y(t) is F(E)-monotone, f
maps E' into E, f(X(0)) <, Y(0), and A®(f) <, ®(f)B, then f(X(1)) <, Y(1) Jor
all t > 0. The same result holds when the direction of the ordering is reversed.

PrOOF. The argument runs exactly the same as in the proof of Theorem 3.1, except
we are proving that

PEXP(tA)‘P(f ) <, qé(f )exé(;tB)

and the key identity hereis -
®(f)exp(¢B) - exp(.{A)fl;(f )= fo T%éxp((“t“ — $)A)®(f Jexp(sB) és
= [ex((t ~ s)A)(®(/)B ~ AR(f))exp(sB) ds

Now ®(/)1; = 15, 50 (is(f)n Aocme-G Gwen Ad( f) <5 O(F)B the rest
follows. =
Specmlcasesofthsthwremwmusedbythe&uthormtheseooh&halfofﬁmm
3.1 in {13}, and:Theosems:5.4 and 64 in [15).-Such-a camparison: result was derived
independently- by Whits {27] for general: state. ;Spaces: by omitting supplementary
variables, and he applied it to blocking networks in [25].
We now gencralize a property introduced in*Keiliont and Kester [9].
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DEFINITION 3.6. A Markov process { X(¢)},, ¢ is F(E)-time increasing if Pr{ X(z)
€T} is an increasing function of time for all T' in S(E). If such quantities are
decreasing functions of time, then { X(#)},, o is F(E)-time decreasing.

THEOREM 3.7. Let { X(t)},, o be a monotone Markov process with generator A and
initial distribution vector p. The following statements hold.
@) {X(£)},» 0 is F(E)-time increasing if and only if pA 2, 0.
@) {X(2)}2 o is F(E)ime decreasing if and only if pA <, 0.

PROOF. Since Pr{ X(1) € T} = p - exp(fA)1r, then Pr{ X(¢) € I'} is an increasing
function of time if and only if )

d
Zi'iPr{X(t) €T} =pAexp(tA) - 11> 0.

Therefore { X(¢)},, ¢ is F(E )-increasing if and only if pA exp(fA) >, 0. IfpA>, 0
and A is monotone, then pA exp(tA) >, 0 by Lemma 3.3. If pA exp(¢A) >, 0 for all
t > 0, we merely set ¢ = 0 and get pA >, 0. The proof for statement (ii) is similar. ®

4. Constructing monotone Markov processes. In §3, we demonstrated the impor-
tance of monotone Markov processes to deriving comparison theorems. Now, we will
introduce methods for constructing them. For all functions f that map E into itself,
and all a in /_(E), we can define two bounded operators ®(f) and A(a) where

e®(f) = ¢, eA(a)=a(x)e,.

Notice that @)1y = 11, and so &)1 = 1. Before we proceed, we define I'#I”
to be the symmetric difference for two subsets of E or (T\I") U (I"\ T).

THEOREM 4.1. A is an S (E)-monotone generator for a Markov process if:
(i) A is the strong operator limit of other #(E)-monotone generators.
~ (ii) A is the sum of two S(E)-monotone generators.
(iii) A = A(a)(®(®) — X), where f is an F(E)-isotone function and & is a positive
bounded function on E that is constant on all sets of the form T #fYT) for all T in
F(E). ‘ ‘

" PrOOF. Let p<, q. By the hypothesis of (i), there is a sequence {A,} of
#( E)-monotone generators that converge to A in the strong operator topology. It then
follows that the sequence {exp(tA,)} converges similarly to exp(fA). We have
pexp(tA,) <, qexp(tA,) for all n since each A, is #(E)-monotone. Taking the limit
gives us pexp(tA) <, qexp(fA), and so we are done. -

Now suppose that A = B + C where B and C are #(E)-monotone generators. If
P <, q, wethen have pexp(tB) <, qexp(sB). From this we get

 peR(BIp(1C) <, aexp((B)explcC).

By induction, we haye for al

o el < denlimenlic)

¥

St IS .

Using the T fotter product formulé (see Rered‘ and Simoﬁ [19, p: 295}), we have mthe



358 WILLIAM A. MASSEY
norm operator topology,

lim (exp(—t-B)exp(iC)) = exp(7A).
n-»co n n
From this it follows that pexp(rA) <, qexp(rA) and so (ii) holds.

Now let A = A(a)®(f) — I) as given by (iii). We are given that p - 1, < q - 1 for
all T in F(E). To show that p - exp(tA)1; < q - exp(tA)1y, it is sufficient to prove
that exp(7A) maps the /. -closure of the positive linear cone generated by {11} rc )
into itself. To show this, it is sufficient to find some positive constant 8 such that
A + BI has this property since

exp(h) = T S (A + BD)"

n=0

Setting B = |al,, gives us
(A + BD1; = (B1+ A(a)(®(f) - D)1p
= B1r + A(a) (1) — 1r)-
As indicator functions for all subsets A and I' of E we have
[1a(x) = 1p(x) | = 1apr(x)

for all x in E. Since a is a bounded function on E that is constant on f~}(T')#T, we
can replace A(a)1,-1r) — 1r) by a(T')1 -1y — 1r) where a(T') equals a evaluated at
some element in f~}(I')#I. We now have

(A +BD1; = (B — a(T))1r + a(T)1 ;.

By definition of 8, 8 — a(T') > 0 and so A + BI preserves the positive cone generated
by {1r} res if £~ preserves F(E), so we are done. =
Theorem 4.1 gives us a way to construct two stochastically ordered processes.

THEOREM 42. Let A =L, A(a,XE(f;) — I) be a bounded operator where the o,
and f, satisfy hypothesis (iii) of Theorem 4.1, and I is a countable index set. Now let
B =1, ,A(e;XE(g,) — I) where the g, are functions that map E into itself such that
f(x) < g(x) for all x in E. If X(t) is the Markov process with generator A, Y(t) is
similarly defined by B, and X(0) <, Y(0), then X(t) €, Y(t). The same result holds
when the directions of all the orderings are reversed.

ProOF. By Theorem 4.1, we know that A is #(E)-monotone. By Theorem 3.4, we
need only show that A <, B. By the similar decompositions of A and B, it is sufficient
to show that E(f,) €, E(g,) for all i € I. By the definitions of <, and E(f), this
means that we want to prove for all i € I and T’ € #(E) that 1,1, € 1,-1.r). This
holds if and only if £ (T)C g7 YT). But if y € f{T), then f(y) €T and by
hypothesis g,(y) > f,(y)- So we have g(y) €T since T is an increasing set, or
y € g7 {(T'). This finishes the proof. =

s Smm The theorems derived in §4 for a general comparison of
Markov processes can be sharpened considerably for the strong ordering. This follows
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THEOREM 5.1 (Strassen). Let p and q be two probability vectors in I,(E). We have
P <, qQ if and only if there exists a probability vector v in I,(E X E) such that
r(x,y)=0ifx£yand

P= X Lr(xye, a= X X r(x e,

x€FE y»x x€E y»x

Strassen’s result [23] is actually more general than the statement given above. For the
case of E being a finite set, we refer the reader to an elegant proof of Theorem 5.1 in
Preston [18] that uses the min-cut, max-flow theorem. The following two theorems are
generalizations of results proved in Kester [10].

THEOREM 5.2. Let X(t) be a Markov process with generator A. Then X(t) is strongly
monotone if and only if for all x < y in E, and all increasing sets T such that either x € T
ory € T holds, we have

e Al < e Al (5.1)

The proof of this follows immediately from the theorem below.

THEOREM 5.3. Let X(t) and Y(t) be two Markov processes with generators A and B
respectively. Then X(t) <,, Y(t) given that X(0) <,, Y(0), if and only if for all x < y in
E, and all increasing sets T such that x € T or y & T, we have

e Al; <¢BI;. (5.2)

PrOOF. Given that X(0) <,, Y(0) implies X(¢) <,, Y(¢), we then have for all x < y
in E and all increasing sets T’

" e£xp(tA)1; < eexp(rA)1r. (5.3)

Now if x €T or y €T, we still have e, - 17 = e, - 1. Subtracting this from (5.3),
dividing by ¢, and letting 7 — 0, gives us (5.2).

To prove the converse, let P,(A) =1+ A/A and P,(B) = I + B/A, where A > O is
sufficiently large enough to make P,(A) and P, (B) stochastic matrices. It is sufficient to
show that for all probability vectors p <,, q, that p - Py(A) <,, q - P\(B) holds. By
induction, we then have p - P\(A)" <, q - P\(B)" for all », and so

0 —A? )\t L n
p-ep(iA) = 3 M)y p (a)
n=0
o —At )Y L n
< LS ,E' )q-Pa(B)
neQ
<, q- exp(?B),

which proves that X(0) <,, Y(0) implies X(¢) <,, Y(2).
Showing that p <,, q implies p - P,(A) <, q - P,(B), follows if for all x < y in E,
we have

e P(A) <, ¢, P\(B). (54
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This i3’ due to Theorem 5.1 (Strassen) which -allows p to be written as a convex
combination of e,’s such that if each one is replaced by e; for.some y > x, we get q.
To show (5.4), we need to verify that e, - P\(A)l; < e, - P\(B)1; holds only for the
following three cases:

(1) x€Tland y€I,

2 x¢T'and y €T,

3 x¢Tand yeT.
Since T is an increasing set, it is impossible to have x,& T but y & T, so cases (1)~(3)
exhaust all of the possibilities. For cases (1) and (2), e,- 1p =e¢,- 1 so (5.4) is
equivalent to (5.2), our hypothesis. For case (3) e, - 17 = 0 and e -1p=1. If we
require that A > |A|; + [B|;, then :

exPA(A)lr - eyPA‘(B)lr =-1+ %(exAlr - eyBlr)

< ~1+ 3 (Al + Bl)
< 0.

So (5.4) holds in general for A > JA], + [BJ;, and this completes the proof. =
Theorems 5.2 and 5.3 allow us to strengthen condition (iii) of Theorem 4.1, for the

strong ordering case.

THEOREM 54. A = A(a)}(®{) — 1) is a strongly monotone Markov generator if and

only if the following three conditions hold for all x < y in E:
(i) If both a(x) and a(y) are nonzero, then either f(x) < f(y) holds, or the

conjunction of x < f(y) and f(x) < y.

(1) If a(x) < a(y), then x < f(y).

(i) If a(x) > a(y), then f(x) < y.

Proor. By Theorem 5.2, we know that A is strongly monotone if and only if for all
x < y in E we have

exAlr § eyﬁlr ’ (5 .5)

for all increasing sets I' with x € T'or y & I". Since A = A(a)(®(f) — D), (5.5) becomes

a(x)lr(f(x)) < aly)ir(f(¥)) - (58)
for all increasing sets I’ such that y E T, and
() (£(x)) >« () (6.7

where I'¢ is the complement of all increasing sets I' with x € T.
We first show that conditions. (i), (i), and (iii) imply (5.6) and (5.7). If a(x) = a(y)
# 0, then (5.6) and (5.7) are both equivalent to showing that

f(x) el implies f(y)eT (5-8)

for all increasing sets such that x' € I'or y % F. Given: (i), we kiow'that {5.8) holds if
J(x) < f(y). Otherwise; X < f(%) and::f(%) € y.iGiyen x;& I, we ﬁan(?)E fs
(5.8) is still true.

If a(x) < a(y), then by (ii) we Jave x < f(y). By (i), we must have f(x) gf(y) or
F(x) < . If the former, then 1,.( f{x)) € 1;(F()). and so (5.8) holds when y € I. If
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the latter, then y € T means that f(x) € T, so 1p(f(x)) = 0, which proves (5.6).
Condition (5.7) follows from (i) since x < f(y) and x € ' mean that f(y) €T, so
11(f(»)) = O. For the case a(x) > a(y), the proof is similar.

Now we prove the converse. Once again, we consider the three cases of a(x) = a(y),
a(x) < a(y), and a(x) > a(y). If a(x) = a(y) #0, then (5.6) and (5.7) both imply
(5.8) whenever x € " or y & T for all increasing sets I'. Suppose that f(x) £ f(»),
then T = (f(x)) is an increasing set with f(x) € I and f(y) & T'. Given condition
(5.8) however, we must have x ¢ T and y€T. From y €T follows f(x)<y.
Repeating this argument with I' = (f(»))« gives us x < f(y).

If a(x) < a(y), then for (5.6) to hold when a(x) # 0, we must not have 1:(f(x))
=1 and I(f(y)) = 0. This gives us condition (5.8) again, with y & I'. So either
f(x) < f(») holds or f(x) < y. Using (5.7), we must have 1.(f(y)) =0 or f(y) €T,
whenever x € I'. Setting T’ = {x), we get x < f(y). This proves that a(x) < a(y)
implies (i) and (ii). By a similar argument, a(x) > af y) implies (i) and (iii). =

6. Weak orderings. Whereas £, ( E) always includes a stochastic order, the same
is not true for £,,(E) or £,,«( E). In [16], we give an example of a partially ordered
space where %, (E) does not induce a stochastic order. On the other hand, we
demonstrate there that .£,,(E) induces a stochastic order for many partially ordered
spaces such as finite sets and lattices (even upper-semilattices). We will henceforth
assume that E is a partially ordered space that admits .%,,(E) as a stochastic order.

PROPOSITION 6.1. Let #(E) be a strongly separating family of increasing sets. If
F(E) is closed under intersections, then S, (E)C S(E). If #(E) is closed under
unions, then 5,,.(E) € #(E).

Proor. Foranyx € E,let £, = {IT € S(E)and x €T} and set A =N ,4T.
If #(E) is closed under intersections, then A belongs to S(E)and x € A. If y # x,
then there exists some I' in #, such that y & T. From this it follows that A = (x). A
similar proof holds when S(E) is closed under unions. =

We now provide a characterization theorem for all weakly isotone functions.

THEOREM 6.2. A function f is weakly isotone if and only if f is increasing on E and
there is an increasing function g defined on Dom(g), a subset of E such that

fOg(x) > x férx € Dom(g), gOf(x)<=x forx € f(Dom(g)) where
f(E)‘ if E = (x¢) for some x, € E,

Dom(g) ={ ((E)* - N {f(x)}*  otherwise.

xek

Proor. We will only consider the case E # {x,) for all x, in E. The proof for the
Gther case is similar. If f is weakly isotone, then for all x in E we have [ ¥x)
equalling E, &, or () for some y in E. We also have

S Xx)equals Eor @ = E equals {zf(z) # x} or {xIf(z) > x}
o x&f(E) orxe N {f(2))*
- ze€E

o x ﬂE Dom(g).
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So for all x in Dom(g), there exists some g(x) in E such that f~Xx) = (g(x)). Since
g(x) belongs to f~1(x), then fOg(x) > x. If x is an element of f~(Dom(g)), then
F7Xf(x)) = (80f(x)) which gives us x > gOf(x) since x belongs to f~X f(x)).
Finally, if x, < x; in Dom(g), then f~%(x,) € f"Xx;). We then have (g(x,)) €
(8(x,)) and so g(x,) € g(x,). Therefore g is an increasing function on Dom(g).

We now prove the converse. Given f, g, and Dom(g) with the properties described
in the hypothesis, we want to show that f~X(x) equals E, &, or (g(x)). As before,
fXx) equals & or E if and only if x € Dom(g). If x.€ Dom(g), then fOg(x) > x
hcllxce g(x) € f%(x). But f is increasing so f~!(x) is an increasing set and (g(x)) C
fXx).

If yefXx), then f(y)> x. We claim that f(y) belongs to Dom(g). Since
x € Dom(g), then x & [, _.{f(z)}*. The intersection of decreasing sets is a de-
creasing set also and f(y) > x means that f(y) € N, o {f(2)}*. Clearly f(y) €
f(E)*, so f(y) € Dom(g). Since g is increasing, then f(y) > x means that gOf(y)
> g(x) and y > gOf(y) implies y > g(x). Therefore f~Yx) c (g(x)), and so
fXxy={(g(x)). =

DEeFINITION 6.3. Let Z(E) be a bounded linear operator that maps /,(E) into
1,(E) where, for all x € E, e Z{E) = ¥, .e,. Z(E) is called the zeta function of E.
A is the generator for a Mdbius monotone Markov process if for some A > 0, there
exists a bounded, positive operator M that maps /_( E) into itself such that

P,(A) - Z(E) = Z(E) - M.

Kester [10] discusses M8bius monotonicity for the case of E being a finite set. In Rota
[19], we see that when E is a finite set, then the matrix inverse of Z( E) is referred to as
the Mabius function, hence the name for this type of monotonicity. We now show that
it is a special case of weak monotonicity.

THEOREM 6.4. Mibius monotonicity implies weak monotonicity, but the converse does
not hold.

Proor. Expanding exp(rA) in terms of P,(A) gives us

exp(iA) - Z(E) = 3, M p (a)". 7()

n=0

= Z(E) . {i f:‘.'g_!)ﬁQ:Mn.

n=0

M is positive, so the last sum is positive. We then have that pZ( E) < qZ( E) implies
pexp(tA)Z(E) < qexp(tA)Z(E). Since p <, q if and only if pZ(E) < QU E), we
have shown that A is weakly monotone.

We now show by counterexample that weak monotonicity does not imply M&bius
monotonicity. Let E = {a, b,c} where a < b, ¢ < b, but a and ¢ are incomparable.
Define a Markov process on E with generator A = a(®(f) — I) where a > 0 and
f(a) = f(b) = f(c) = a. Since f~(T') equals E or @ for any subset T of E, then f is
weakly monotone. By Theorem 4.1, A is then a weakly monotone generator. Let
e, = ¢, &, = &,, &, = ¢, be the unit basis vectors of /;(£). When then have

0 0 0 1 00 _1 1 0 o
A=la -a 0|, Z(E)=|1 1 1|, Z(E) =]-1 1 -1}|.
a 0 - 0 0 1 0 0 1
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Computing with these matrices, M must have the form
M = Z(E) 'P,(A)Z(E)

= +Z(E) 'AZ(E) +1

1 0 0
B ECN
o a

With both a and A positive, it is impossible for M to be a positive matrix. Therefore A
is weakly monotone, but not Mbius monotone. =m

In conclusion, we remark that all of the results in this section can be dualized for the
weak* ordering. Merely let E* be the partially ordered space dual to E (see Birkhoff
[3, p. 3]). The map that sends a subset of E to its compliment, induces a bijection
between £, ,.(E) and S, (E*).

7. Time-inhomogeneous Markov processes. We now extend the comparison re-
sults of the previous sections to time-inhomogeneous Markov processes. This section
was motivated by work that the author did for analyzing the time-dependent M/M /1
queue (see Theorem 10.1 of [14]). Let { X(z,, 5)|t, < s < t} denote such a process with
state space E that has evolved from time 7, to time ¢ with X(t,) = X(#,, t,). If
p(Zo, s) represents the probability vector for X(¢,, s) (resp. p(¢,) for X(1,)), we will
consider processes that satisfy the integral version of the Kolmogorov forward equa-
tion namely

B(tg, 1) = Blto) + ['Blto, $)A(s) s

The process { X(#,, 5)|t, < 5 < t} is governed by a family of generators { A(s)|ty < s
< t}. Each A(s) is the generator of a time-homogeneous Markov process in its own
right. If the original process was time-homogeneous (A(s) = A for all 1, < s < 1), we
would then have

p(t0, 1) = p(1o)exp((# ~ 15)A).

We want a similar representation for time-inhomogeneous processes. Unfortunately,
t
Blios 1) * Blio)exp( f'A(s) ds
0

in general because A(s) and A(s") may not commute for s # s’. We can obtain our
desired representation if we appeal to the theory of product integration (see Dollard
and Friedman [S]). First, let our family of generators {A(s)}t, € 5 < ¢} satisfy the
following three conditions:

(P1). For all s in [¢t,, 1], A(s) is a bounded operator on /,(E).

(P2). A as an operator-valued function on [#,, ] is strongly measurable.

(P3). The upper integral of |A(-)| on [#,, ¢] is finite.
We then get the following theorem, which is Theorem 5.3 (Chapter 3) in Dollard and
Friedman {5].
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THEOREM 7.1 (Dollard and Friedman).© When conditions (P1), (P2), and (P3) are
satisfied, the product integral E,\(t,, t) exists and is the umque solution of

E (to,t) =1+ j EA(to,s)A(s)ds or EA(zo,:) =1+ j A(s)E,(s, 1) ds

where integration is defined by the strong operator topology.

Now let X(t,,¢) be a time-inhomogeneous Markov process with a family of
generators satisfying conditions (P1), (P2), and (P3). We can then write the probability
vector for X(2,, 1) as p(ty, t) = p(to)EA(20, 1)

DEFINITION 7.2. The family of generators {A(3)|t, < 5 < t} is F(E )-monotone on
[0, t] if for all probability vectors p and q in /;,(E) we have

P <, q impliesthat pE,(s,t) <, qE,(s,7)

for all s in [#,, ]. 7

Correspondingly, we will say that X(f,, t) is #( E)-monotone on [t,, t] if {A(s)[f,
< 5 < t} is J(E)-monotone on [t,, t].

THEOREM 7.3. Let X(1,,t) and Y(t,, t) be two Markov processes with state space E.
We are given that either X(t,, t) or Y(t,, t) is F(E)y-manotone on [1,, 1]. If {A(s)]ty <
s < t} and {B(s)|ty < s < t} are their respective family of generators, X(1,) <, Y(t,),

and A(s) <, B(s) for almost all s in [t,, 1], then X(2,,1) <, Y(25, 1).

PrROOF. The argument is identical to Theorem 3.4, once we establish the following

identity

, e d
Ey(t,1) — Eg(t, t) = _/; ZEa(to, )Eg(s, t) ds
0

- ];'EA(JO, s)(A(s) — B(s))Eg(s, t) ds

and make the observation that E,(,, s) is a positive operator for all sinft,,7]. =

THEOREM 74. Let X(1,,1) and Y(1,,1) be twe Markav pmcesses vmh state spaces
E’ and E respectively, having corresponding families of generators {A(.v)lr0 €355t}
and {B(s)|ty < s <t}. If Y(ty,t) is F(E)-monotone on [ty,t), f maps E’ into E,
f(X(t,)) €, Y(2,), and AE)®(M) <, ©0)B(s) for almost all s in [ty,t], then
J(X(25, 1) <, Y(89, 7).

PrOOF.. Once again, the proof here is identical to its counterpart, Theorem 3.5 after
establishing the following identity

Er(to, N8(f) = O(/)En(t0, ) = [ ZEA (1o, )B(NE(s,1) d

= [E AR R (NBEPE G

from this the theorem follows. W
Now there is left only the task of constructis Iannhgs of JQE )-monotonc gennra—
tors. ’Ihefoliowmgtheorcmmblﬁusmusc e resulis of Theorem 41, - -
" THBOREM 1.5. {A(s)); s <H} ¥ J(E)«mm mf{ro,sﬂ} if-wachs ma:w

5

A(s) is an F(E)-monotone Markov generator for almost all s in [t,, t]. - -2 70



STOCHASTIC ORDERING FOR MARKOV PROCESSES 365

PRrOOF. . It is enough to show that p <, q implies pE (¢, 1) <, qE,(t,, #). For
each n, let {t,(n)li = 0,1,..., n} be a partition of {7, f] where , = 1o(n) < f;{(n) <
-er < t,(n) =1t with At(n) = t(n) — t,_y(n) for i=1,...,n and
lim, _,  max, ., ,At(n) = 0. Now let {A, ()|t < s <t} be a family of generators

such that

. 1 t:(n)
A (s) =AY = 7 A(r) dr
() = A= 50wy [ )

for 7,_,(n) < s < t,(n). Each A () is a step function on [t,, ], so
E, (15.1) = Héxp(Ati(n)A(,‘;)).
i=1

By Theorems 3.2 and 5.1 (Chapter 3) of Dollard and Friedman {5}, we have as n — oo,
E, (1o, 1) = E, (2o, 1) with respect to the strong operator topology.

By Theorem 4.1, each A% is #(E)-monotone. Given p <, q, we then have by
induction pE, (o, t) <, qEA"(to, t). Taking the limit as n — oo gives us the desired
result. =

8. Applicatiens to the Jackson network. We will define a Jackson network with
single server queues by constructing its generator.

E=2ZV, I={(i,j))P<i, j<N},

0’ =]""0
Aj’ ‘ 0 j*O,
a(i,i)—.”'iq”. 1*0,j=0,
&;Pijs i#0,j#0,
_f(l‘rg)(...,n‘-,...)=( (n,=1)7,. ),
Japeeesnjee) = (oooom; + 1,. ),
Lo n(eensnyy... n;)= (“"""*1""’”!"*'1"“)’ n; >0,
G A ELLFT) 27 - (..'.}ﬁ,-,...,nj,...), niao’

and finally
A= Y "(v',D(q’(‘(«;j)) - I)'

(t J)Ef

’We will fet Q(t) denote the assocxated queue lenglh process. Notice that each f, ;, is

an ‘increasing function with respect 6 the canonical {componentwise) partial ordering

on ZY. For any partition & of the set {1,2,..., N}, we define A, to be the generator

for an associated Jackson network with queue length vector Qu(¢), where A, =

E(, ne ,a(, 1,(4'}( f ) - I) usmg the notauon above, with

= ,t’ Q,‘{(f) { Ua‘m) Q(f(o 7)) l, ?sepamtuu and j,
LT ﬁ(f, j)) s OthGI'WISC '
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If J is a subset of {1,2,..., N}, let ZJ be the set of nonnegative integer |J|-tuples
with the same partial ordering. So, for example, Z¥ = X,_, Z%. Now for every
partition £, define

£(ZV) = { XL, C 2} and T s increasing}.

Clearly 5, ,(ZY) € #5(ZV), so £»(ZY) induces a stochastic ordering which we will
denote by <, . Note that if #* is a refinement of - &, then X <, Y implies that
X €4. Y. The motivation for Q,(¢) is as follows. The nodes of the network are
partitioned by 2. For the new process, we have the same activities. The only difference
is that the event of customers leaving node i and entering node ; is forbidden. Instead
such customers upon leaving node i, leave the entire network. As compensation, node j
receives an independent Poisson stream of customers at rate a; ;) = g, p;;- Thus the
original output from i to j is replaced by a Poisson stream into j that matches the
output rate when node i is not idle. It follows from Theorem 4.1 that Q(¢) as defined
here is strongly monotone. For Qg(¢), we can state a deeper result, which is used
implicitly in the theorem that follows.

PROPOSITION 8.1 Q (1) is P-monotone.

Let 2* be a refinement of 2. Given the construction of A 5, we see that (Ag)ze = Azs.
Intuitively, one would expect the queue length process Q. (?) to be “larger” than the
queue length process Qu(¢). In [12], the author proved that this is indeed the case
provided that the proper type of stochastic ordering is employed. We now restate the
results of [12] below using notation consistent with this paper.

THEOREM 8.2 (Massey). If P* is a refinement of P, and Q(0) < 5+ Q4+ (0), then
Qs(?) <5+ Qp- (1) (8.1)

for all t > 0. Moreover, if Q(0) = Qu.(0), then Qu(t) < 5 Qg.(?) if and only if
Qu(2) and Qg.(t) are identical in distribution.

For any network that can be nontrivially partitioned, we see that the relation (8.1)
cannot be extended to a stronger stochastic ordering like <, . In turn, this means that
there is no relation like (8.1) with respect to <,, . Or equivalently we see that this is a
relation that does not extend to a sample path comparison between the two processes.

These results by no means exhaust the possibilities for stochastic ordering on
Jackson networks. There are other partial orderings on Z¥ that may be appropriate. A
special case of Theorem 14 in Whitt [26] for non-Markovian series networks with
multiservers and possibly finite waiting rooms, reduces to the following result for
Jackson series networks.

THEOREM 8.3 (Whitt). For m and nin ZY, let m < ¢n denote L] m; < T{_,n, for
allj=1,..., N. Let Q,(t) and Q,(t) be two queue length processes for series Jackson
networks with Ay(1) < A,(2) but p,(1) > p,(2) foralli=1,...,N. If &,, denotes the
strong ordering induced by <, then Qy(0) <,, Q,(0) implies that Qy(?) <,, Q7).

We also note that all of the theorems in this section hold for time varying Jackson
networks. This follows from using Theorems 7.3 and 7.5.

Acknowledgements. The author is indebted to Ward Whitt of AT & T Bell Labora-
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