A Sample Path Analysis of the M/M/1 Queue

Francois Baccelli; William A. Massey

Journal of Applied Probability, Vol. 26, No. 2 (Jun., 1989), 418-422.

Stable URL:
http://links jstor.org/sici?sici=0021-9002%28198906%2926%3A2%3C418%3 AASPAOT%3E2.0.CO%3B2-W

Journal of Applied Probability is currently published by Applied Probability Trust.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/apt.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Mon Jan 2 18:56:33 2006



J. Appl. Prob. 26, 418-422 (1989)
Printed in Israel
© Applied Probability Trust 1989

A SAMPLE PATH ANALYSIS OF THE M/M/1 QUEUE

FRANCOIS BACCELLL* INRIA
WILLIAM A. MASSEY ** AT&T Bell Laboratories

Abstract

The exact solution for the transient distribution of the queue length and busy
period of the M/M/1 queue in terms of modified Bessel functions has been proved in
a variety of ways. Methods of the past range from spectral analysis (Lederman and
Reuter (1954)), combinatorial arguments (Champernowne (1956)), to generating
functions coupled with Laplace transforms (Clarke (1956)). In this paper, we present
anovel approach that ties the computation of these transient distributions directly to
the random sample path behavior of the M/M/1 queue. The use of Laplace trans-
forms is minimized, and the use of generating functions is eliminated completely.
This is a method that could prove to be useful in developing a similar transient
analysis for queueing networks.

TRANSIENT ANALYSIS; BUSY PERIOD; BESSEL FUNCTIONS; RANDOM WALKS; REFLEC-
TION PRINCIPLE

The exact solution for the transient distribution of the M/M/1 queue in terms of
modified Bessel functions is well known. During the past four decades there has been no
shortage of techniques for obtaining its solution. Approaches of the past have ranged
from spectral methods (Lederman and Reuter (1954)), combinatorial arguments (Cham-
pernowne (1956)), to generating functions coupled with Laplace transforms (Clarke
(1956)). As recently as 1987 the transient distribution for the M/M/1 queue remained a
topic of interest, as the many papers of Abate and Whitt ((1987), for an example) as well
as the paper by Parthasarathy (1987) both indicate. This paper grew out of the authors’
current interest in developing techniques to derive explicit solutions for the transient
distribution of some queueing networks (see Baccelli and Massey (1988)). We want to
view the analysis of the M/M/1 queue as a stepping stone to some higher-dimensional
analogue. Jackson networks, for example, can be viewed as multidimensional versions of
the M/M/1 queue. In this paper, we present a derivation of the transient distribution for
the queue length and the busy period of the M/M/1 queue that follows purely from the
sample path behavior of the process. We eschew the analytical approaches of relying
heavily on Laplace transform techniques and eliminate the use of generating functions
altogether. The methods that we use instead are an amalgam of techniques like the
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reflection principle for random walks and stopping time arguments used by Takacs
(1962). Despite the popularity of these methods, it appears that we have applied them to
the M/M/1 queue in a novel way. Moreover, we feel that we have a derivation that is
more organically related to the underlying probabilistic structure of the M/M/1 queue.
To begin, we let Q(¢) be our M/M/1 queue length process with Poisson arrival rate 4,
and exponential server rate u. We associate with this process Z(t) = Z(0) + N,(¢) —
N,(t), where N,(t) and N,(¢) are two independent Poisson processes with rates 4 and u
respectively, and Z(0) = Q(0). The transitions of Z(¢) are identical to those of Q(¢)
except at the zero state, where Z(t) is allowed to become negative. One key feature of
Z(t) is that it is a nearest-neighbor random walk on the integers. So for example, if
Z(0)=m and Z(t) = n with m <n, then each corresponding sample path must visit
every state between m and n. We will construct the transient distributions for the queue
length and busy period of Q(¢) in terms of the distribution for this intermediate process
Z(t). This will give the solution of the former quantities in terms of modified Bessel
functions by the theorem below.

Theorem 1. For all integers m and n, we have

P (Z(t) = ) = exp( — (4 + w)1) (f)‘"_m I (2 /70).

Proof. Using the fact that N,(¢) and N,(¢) are independent processes, we get

P, {Z(t)=n} =Pr{N,(t) = N,(t) = n — m}

k

I ™M8

Pr{N,(t) = k}Pr{N,(t)=k —n + m}
0

_ 3 exp( — Af)(A1)* exp(— ut)(ut) ="
k=0 k! (k —n+m)!

_ _ é(u—m)/Z . © (t\/E)Zk—n+m
=exp(— (@ +u)) (u) kz:o k!'(k —n + m)!

= exp(— (4 +)0) G)("_mm I _n(2t/R),

where I,(-) is the nth modified Bessel function.

For all integers n, we define a random stopping time 7, = inf{¢ | Z(¢) = n}. We will
let P,,{T, = t} denote the density of T,, given that Z(0) = m.

Lemma 2. For all non-negative integers, we have

PT, =1) =(§> PT_, =1).

Proof. We prove this for the Laplace transform version of this lemma, namely
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1 n
Eq(exp(— sT,)) = (;) Eqfexp(— sT_,).

By sample path arguments including the strong Markov property (see Takacs (1962),
pp. 32-38), we have Ey(exp(—sT,))= Eyexp(—sT}))" and Eyexp(—sT_,))=
Eyexp(— sT_)))", so it is sufficient to prove that the lemma holds for the case n = 1.
Using sample path arguments again, we have

A

u
E, —sT)) = + E —sT))2
olexp( — sT})) Ttats Atats o(exp( — sT7))

This formula is more transparent when we note that E_(exp(—s7T)))=
E(exp( — sT,)) = Eq(exp( — sT}))* Similarly, we have for Ej(exp(—sT_))),

u

Ey(exp(—sT_,)) = +
oexp( ) A+p+s A+p+s

Ey(exp(—sT_)))%.

Dividing the last equation by Ey(exp(—sT_,))>, we see that Ey(exp(—sT}))
and Eyexp(—sT_,))"! both solve the same quadratic equation. However,
| Eo(exp(— sT))| <1, and for similar reasons |Ey(exp(—s7_,))"'| > 1. Therefore
Eyexp(— sT})) and Ey(exp(—sT_,)) "' are two distinct roots of the same quadratic
equation. From this, it follows that

E(exp(— s7)))

A
Eoexp(—sT_}) 4

b

and this finishes the proof.
Now we can solve for the busy period distribution of Q(¢). We let * denote the
convolution operation for probability densities.

Theorem 3. For all positive integers m and n, we have
P, {Q@t)=n,Ty>t}=P,(Z(t)=n}— (ﬁ)" P, {Z(t)= —n).

Proof. The derivation goes as follows:

P {Z(t)=n}=P,{Z(t)=n, Ty> 1t} + P, {Z(t)=n, Ty =t}
=P, {QU)=n,Ty>1t}+ P, {Ty=1t} xPy(T, =t} *P,{Z(t) = n)
=P, {Q(t)=n,T,>1)

- G)an{TF 0 #P{Ty =) x P {Z() = — 1)

=P {QO) =7, Ty>1)+ G)”pm{z(t)= ).
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Consider the term P, {Z(¢) = n, T, = t}. This probability can be viewed as the measure
of all paths that start at m, terminate at n, and touch 0 along the way. All such paths are
equivalently expressed as paths originating at m that hit 0, then hit n, and ultimately
terminate at n. The probability of this sequence of events is P, {To =1t} * P,{T, =t} *
P,{Z(t) = n}. The remaining sequence of steps follows from making similar arguments,
appealing to Lemma 2, and using the translation invariance of the process Z(¢), namely
that P, {Z(t)=n}=P,  {Z(t)=n+k} for all k, and similarly P, {7, =t}=
P, . {T,+« =t}. Finally, rearranging terms completes the proof.

Lemma 4. For all t >0, we have
ot)y=21)— 0inf Z(t)A0.
Ss=t
Proof. Let S, <S,<--- equal the embedded time points where the jumps of Z(¢)

occur. We then construct Q(¢) such that its jumps are coupled with those of Z(¢). If
Q: = 0(S;) and Z; = Z(S;), we then have

Qin=Qi+Z, — zZ)*.
Since at = sup(a, 0), we have
Qii—Ziy=sup(Q —Z;,— Z;;))=sup(0, — Z,,- - -, — Z; ).

The last step follows by induction and the fact that Q(0)= Z(0). Setting
sup( — a, — b) = — inf(a, b), gives us

Qiv1=Z — inf ZAOQ.

0sj=i+1
Since the sample paths of Q(¢) and Z(¢) are step functions, the lemma is proved.

This sample path construction of Q(¢) now gives us its transient distribution.

Theorem 5. For all non-negative integers m and n, we have
A
Pa(0W0<n) = Pa(20)<n) = (2) PatZ) < =)
Proof. By Lemma 4, we can construct Q(¢) such that of Z(¢) < Q(¢). This gives us

P {Z(t)<n}=P,{Z(t)<n,Q@)<n}+ P, {Z(t)<n,Q(t) Z n}
=P, {0@t)<n} +Pm{n +0£n£t Z(s)A0§Z(t)<n}

=P {QW)<n}+ X P {Ti_, =1} *P_, (T, =t} * P {Z(t) = k}

k<n

=P, {Q(t)<n}

A\n
+(;> S Pu{Ticn =1} %Py (Ti_on =t} % Peosn (Z(1) =k — 20}

k<n
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AL
=P,{0()<n} +(;) Y P.{Z(t)=k —2n)
k<n

=PM{Q<t><n}+<§)"Pm{Z(z><—n}.

To decompose P, {n +info,<, Z(s)A0 = Z(t) <n}, we let k equal Z(¢), the terminal
value of the path. The value of k will be any integer less than n. The constraining
inequalities of this event require that Z(t) — n or k — n exceed some minimal value
achieved before time 7. This is equivalent to a path that starts at m, falls to hit k — n,
which is negative, rises to hit k, and ultimately terminates at k. So this probability equals
Zkn Pl =t} *P_ (T, =t} *P{Z(t) = k}. The remaining steps are due to
arguments similar to those in Theorem 3, and this finishes the proof.
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