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Abstract. Time dependent behavior has an impact on the performance of telecommunication models. Ex-
amples include: staffing a call center, pricing the inventory of private line services for profit maximization,
and measuring the time lag between the peak arrivals and peak load for a system. These problems and more
motivate the development of a queueing theory with time varying rates. Queueing theory as discussed in
this paper is organized and presented from a communications perspective. Canonical queueing models with
time-varying rates are given and the necessary mathematical tools are developed to analyze them. Finally,
we illustrate the use of these models through various communication applications.

Keywords: loss models, delay models, offered load, carried load, fluid approximations, diffusion approx-
imations, multiserver queues, wireless networks, packet networks, server staffing, private line services,
circuit switched networks

Table of contents

1. Introduction 174
2. Traffic and offered load models 175
2.1. Poisson processes and connection level traffic 176
2.2. Stochastic integrals, cumulant moments, stationary excess distributions 176
2.3. The M,/ G /oo queue 180
2.4. Offered load models for wireless networks 182
2.5. Offered load models for packet network links 183
3. Loss models 185
3.1. The M,/G/L/L queue 185
3.2. The modified offered load approximation 186
3.3. Server staffing for call centers 188
3.4. Private line services 188

3.5. Time reversible Markov chains 191



174 MASSEY

3.6. Circuit switched networks 192
4. Delay models 194
4.1. The M,;/M,/1 queue 194
4.2. Virtual waiting time for the M;/G/1 queue 197
4.3. The M,/M,/L, queue 198

1. Introduction

There are many telecommunication motivations for the study of queueing systems with
time-varying rates. First, real life is nonstationary. The number of telephone calls made
during the five minute interval of 2:07 pm to 2:12 pm on a Wednesday afternoon is con-
siderably larger than the number of calls made during the five minute interval of 3:46
am to 3:51 am Monday morning. Second, the fields of voice and data communications
have been the major sources of motivation for the growth and creation of queueing the-
ory throughout the entire twentieth century, starting in 1917 with the Erlang blocking
formula [Erlang, 9]. As we increase our mathematical understanding of how time de-
pendent behavior affects queueing models, then we also increase our understanding of
how nonstationary phenomena affect the performance of communication systems.

The greater mathematical complexity of time-varying rate problems has resulted
in far less literature on these types of queues compared to what has been written on the
equilibrium behavior of queues with constant rates. [Hall, 13], for example, is one of
the rare textbooks that devotes an entire chapter to the subject of nonstationary queues.
Many of the theoretical tools such as equilibrium probabilities for Markov chains, matrix
geometric solutions, and Laplace transforms are not available or directly applicable for
queues with time varying rates. This means that new analytical tools continually need
to be invented. The challenge of working in this field is creating the new tools for the
analysis of queues with time varying rates. The reward of working in this field is helping
to determine which mathematical tools are needed to advance the theory of nonstationary
queues. Creating such a new theory provides new formulas and algorithms to employ in
the performance modelling of communication systems.

This paper is an overview of the author’s work on queues with time-varying rates.
The papers by Rothkopf and Oren [47] and Newell [39] are two early works that inspired
the author’s Ph.D. thesis [Masey, 31] in nonstationary queues, under the direction of
Joseph B. Keller. Another significant influence is the work of [Jagerman, 17].

Understanding the impact of time-varying behavior on communication systems is
a primary goal of this paper, so this perspective shapes our presentation of queueing
theory. We start with traffic models in section 2, which describe the arrivals of cus-
tomers requesting communication services, and progress to offered load models, which
describe the total number of personal communication resources requested by arriving
customers (like channels, bandwidth, radio frequencies). This section is a summary of
papers [Duffield et al., 6; Eick et al., 7,8; Leung et al., 26; Massey et al., 33; Massey and
Whitt, 34,36].
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We then progress from the offered load models of section 2 to discuss the loss
models in section 3. Here, we realistically assume that there are a limited number of
resources to be used in parallel (like virtual voice circuits or video on demand). Cus-
tomers requesting service resources currently in use either leave impatiently or are
blocked from accessing the system. This section is a summary of papers [Davis et al.,
5; Grier et al., 12; Hampshire et al., 14,15; Jennings et al., 18-20; Lanning et al., 25;
Massey and Whitt, 35].

Finally, in section 4, we transform the offered load model into a delay model,
when customers, arriving to limited resources already in use, patiently wait in a buffer
until they can acquire their communication resources. This section is a summary of
papers [Mandelbaum and Massey, 27; Mandelbaum et al., 28,29; Massey, 31,32]. E-mail
servers and call centers are examples of applications for delay models.

We associate a canonical queueing example with each type of model and then pro-
ceed to introduce the time-varying rate analogue to this canonical example. The classical
examples for traffic, offered load and loss models are, respectively, Poisson processes,
the M /G /oo queue and the M /G /L /L queue. The canonical examples for delay models
are both the M/M /1 and M /M /L queues. Next, we proceed to develop the time-varying
analogues to the classical models and briefly present the theoretical tools needed to un-
derstand the analysis of each time-varying queueing system. The use of these formulas
are illustrated through various communication applications.

Throughout the paper, we discuss the applications of this time-varying rate queue-
ing theory to areas such as server staffing, circuit switched networks, private line ser-
vices, call centers, packet networks and wireless communications.

2. Traffic and offered load models

Performance modelling of telecommunication systems starts with capturing the behavior
of the call arrival traffic. In this section, we make a case for using the nonhomogeneous
Poisson process as the natural model for customer arrivals. The arriving customers re-
quest some specific amount of resource (circuit, bandwidth, radio channel, etc.) to fa-
cilitate their communication service. In classical telephony, the collective amount of
resources requested by customers at a given time is referred to as the offered load. We
discuss the Mt/G /oo queue as a canonical model for the offered load process, as first
presented by Palm [42].

What is motivating much of the underlying mathematics in this section is the fact
that communication services is wireless and packet networks expand our sense of what
“service” means in a queueing theoretic context. Instead of directly using the theory
of point process or Poisson random measures such as in [Daley and Vere-Jones, 4] or
[Prékopa, 43,44], we appeal to the theory of stochastic integration with respect to a Pois-
son process to construct the appropriate measure. This machinery allows us to generalize
this M,/ G /oo model and helps to construct the offered load processes for wireless and
packet network systems.
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2.1. Poisson processes and connection level traffic

The Poisson process is the canonical traffic process model. We omit the definition of
the stationary version and immediately define the nonstationary version. The stochastic
process A = {A(t) | —oo0 < t < oo} is nonhomogeneous Poisson with mean rate
function A if it has independent Poisson increments. This means that for all s < ¢ we
assume that fs " A(t)dt < oo, which is equivalent to saying that A is locally integrable.
Moreover, we assume that the increment A(t) — A(s) for the interval (s, 7] has a Poisson
distribution or

t t)\ dr)"
—e ks A(r)drw

Pr(A(t) — A(s) =n) n!

; ey

for all non-negative integers n. Finally, we assume that the process has the independent
increment property, i.e. for all mutually disjoint intervals (sy, #;], (s2, 21, ..., (Sk, t],
the random variables

{A@) —AGs) li=1,... .k} 2)

are mutually independent.

While these three assumptions constitute a standard definition for Poisson
processes, we can show that the last two assumptions are redundant by citing the fol-
lowing theorem due to Prekopa [43,44].

Theorem 2.1 [Prékopa, 43]. A simple point (counting) process A with a (locally inte-
grable) mean rate function X is nonhomogeneous Poisson if and only if it has indepen-
dent increments.

This is a simple characterization of nonhomogeneous Poisson processes that sheds
light on when we are justified to model call arrival traffic by a nonhomogeneous Poisson
process. A case can be made for Poisson modelling at the connection level, since the ar-
riving units are large numbers of people who act independently of each other. However,
the reasonableness of this assumption is not as clear at the packet or burst level, since a
stream of packets may arrive from the same file transfer. Statistical studies of real packet
traffic data has verified both of these assumptions (see [Willinger and Paxson, 50]). This
is the insight that theory gives to modelling.

To make the transition from traffic models to offered load models, we must prepare
by using the right mathematical tools. We do so by defining a special stochastic calculus
for nonhomogeneous Poisson processes.

2.2. Stochastic integrals, cumulant moments, stationary excess distributions

We now want to move from mathematically modelling arrival traffic to describing the
collective amount of communication resources requested at any given time. In classical
telephony, this is referred to as the offered load. This is in contrast to the carried load
which is the collective amount of communication resources used at any given time. As
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network capacity increases and communication resources become more abundant (like
optical networks), we may view the offered load of current networks as the carried load
of future networks. Moreover, offered load models tell us what are the largest number of
resources needed at any given time. They also tell a service provider what is the maximal
revenue that can be obtained from the provided services, no matter how efficiently they
are allocated. We assume that customers do not request their resources until they arrive
and their use of the resources is independent but identically distributed to any other
customer.

Mathematically, we want to have the ability to sum over the customer arrival times,
the amount of resources in use and for how long. This can easily be expressed as a
stochastic integral but with a special class of integrands.

Let {S, | n = 1,2,...} be an independent and identically distributed sequence of
random variables and we define ¢ : R> — R to be an integrand if it is a non-negative
measurable function. We then define our stochastic integral with respect to a nonhomo-
geneous Poisson process A to be

A()—A(s)

/ P(Sa-TDAAT) = D ¢(Sh, Ay) 3)
N n=1

where dA(t) = A(t) — A(t—) and A, is the time of the nth arrival in the interval (s, t].
Unlike stochastic integration over Brownian motion, this can be defined as a sample path
integration. Moreover, it can be shown that

E[f d)(SA(r),T)dA(T)] :f E[¢(S, D) ]r(r) dr, “

where S has the same distribution as all of the §,,.

In addition to stochastic integrals, we introduce an important class of moments that
are useful for random variables with distributions “close” to the Poisson distribution.
Let X be some non-negative random variable with E[e?*] < oo for some # > 0. The
cumulant moments of X, denoted C™[X] for positive integers n, are defined by the
generating function relation

9}1

n!

log E[e"¥] =3 =-C"[X]. (5)

n=1

Note that this quantity is used in the definition of effective bandwidth (for a good discus-
sion of this important topic, see [Kelly, 23] as well as [Shwartz and Weiss, 49]). All these
cumulant moments uniquely characterize the distribution of X. The first four cumulant
moments are the following:

CVIX]=E[X], C?[X]=E[X?]=Var[X], (6)
COX]=E[X?] and C@[X]=E[X*]-3E[X?]", %)

where X = X — E[X]. Cumulant moments have the following properties:
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Additivity and homogeneity. 1f X and Y are independent, then
C™[X +Y]=C"[X]+C"[Y] ®)
and for all constants A,
C™[rAX] = A"C"™[X]. )
Poisson test. The distribution of X is Poisson if and only if foralln = 1,2, ...
C™[X] = E[X]. (10)

Gaussian test. The distribution of X is Gaussian (normal) if and only if for all n =
3,4,...

C™[X]=0. (11)
Independence test. Given k random variables X, ..., X, they are mutually indepen-
dent if and only if for all real constants ay, ..., a; we have

k k
C(")[ZaiX,} = > a'Cc™[x;]. (12)
i=1 i=1

Below is the fundamental result for this special class of stochastic integrals. The
proof of this result can be found in [Duffield, Massey and Whitt, 6].

Theorem 2.2 [Duffield, Massey and Whitt, 6]. If
t
Zy(1) :f ¢ (Sac), T) dA(T) (13)

and fioo E[e??©D) — 111 (7) dt < oo, for some @ > 0, then

t
R VAGIES / E[¢(S, 0)"]A(r) dr, (14)
—0o0
foralln = 1,2, ..., which is equivalent to
t
log E[e?#"] = / E[e"" — 1]a(r) dr. (15)
—0o0

From this theorem follows a host of stochastic integral formulas and properties.

Corollary 2.3 [Massey and Whitt, 36]. For all 7, we have mean, variance, and covari-
ance formulas: for integrands ¢ and ¥, we have for all ¢+ > 0

E[Z¢(t)]:/ E[¢(S, 0)]A(r)dr, (16)
Var[Z¢(t)]:/ E[¢(S, )*|a(r) dr (17)

—0o0
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and
t

Cov[Z4(1), Zy ()] = / E[¢(S, D (S, )]A(r) dr. (18)

Poisson thinning. The process {Z,(¢) | —00 < t < oo} is Poisson if and only if ¢ is a
binary (0 or 1) valued integrand. Moreover, if ¢ and v are both binary valued, then Z,
and Z,, are independent Poisson processes if and only if ¢ + v is binary also.

Given a non-negative random variable X, where E[X] < oo, we say that the ran-
dom variable X, has the stationary excess distribution of X if forall x > 0

X

Pr(X, < x) = ﬁ Pr(X > y)dy. (19)
0

A simple way to motivate X, is to consider an i.i.d. sequence of random variables
{X, | n > 1} where each X, has the same distribution as X. Given a fixed time x,
the amount of time that the nth renewal lives before age x is min(X,,, x). The fraction of
time that a lifetime of less than x time units is observed after the first n renewals is then
the ratio of ) ._, min(X;, x) divided by > !, X;. By the strong law of large numbers,
the limiting time average for this event is then

> min(X;, x) _ E[min(X, x)]

li = = Pr(X. < x). 20
Jlim ST X, EIX] r(Xe < x) (20)

We can simplify many useful formulas by using the following distributional transfor-

mation. Note that X and X, have the same distribution or X 4 X, if and only if X is
exponentially distributed. If X is constant, then X. is uniformly distributed on [0, X].
We can use the stationary excess distribution to give a probabilistic version of the mean
value theorem.

Theorem 2.4 [Massey and Whitt, 34]. For all constants and random variables X > 0, if
f is differentiable on [0, o0) and suitably integrable, then we have

ELf+X1-f(O) _ .,
= =E[f'(t + Xo)]. (1)

An immediate application of this theorem is that for any integer n > 0 where
E[X"*!] < oo, then

_ E(XI’H—I)
"~ (n+ DE[X]

Now we proceed to construct the canonical example for offered load models.

E[X]] (22)
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2.3. The M,/ G /oo queue

The M /G /oo queue, which has Poisson arrivals, generally distributed holding times,
and an infinite number of servers, is the canonical example of an offered load model.
If E[S] < oo and QO is the steady state number in the M /G /oo queue, then for all
non-negative integers n

Pr(Qe = n) = e—AEm@ and E[Qs] = AE[S], (23)

where A is the mean Poisson arrival rate and § is the random service time. Observe that
the distribution of Q. is insensitive to the distribution of S for fixed mean E[S].

The mathematical tools of the previous subsection give us the machinery to con-
struct the M,/ G /oo queue. If we let S, equal the i.i.d. random service time for nth
arrival, we can then construct the following quantities,

0 (t) = number of calls in progress at time ¢

and
Do () = number of terminated calls before time ¢,

using stochastic integration, i.e.

Qco(t) =/ Lsp0)>1—1) dA(T) (24)
and

t
Do (1) =/ Lisy <i—ry dA(T). (25)
—o0

These sample path constructions also describe the mechanics of the M,/ G /oo queue.
The quantity dA(t) equals 1 only when 7 is the time of a customer arrival, otherwise it
is 0. If 7 is the time of the nth arrival then n = A(t) and its connection holding time
is S,. If S, > t — 7, then the nth arrival is still in the system a time ¢, otherwise it has
departed the system. Thus Q. (¢) is counting all the arrivals still in service and D (t)
is counting all the arrivals with service completions. We can interpret the M,/ G /oo as
the offered load model for the classical telephone trunkline system. From our general
theory for these stochastic integrals, we obtain

Theorem 2.5 [Eick, Massey and Whitt, 8]. The M,/ G /oo queue has the following prop-
erties:

1. For all ¢, Q4 () has a Poisson distribution with
t

E[Qw(D)] :/ Pr(S > 1 — 1) A(z) dr. (26)

—00

2. Forallt < u,

t

Cov[ Quo(1), Quo(w)] = f Pr(S > u — ) A(1)dr. 27

—00
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3. The process {Dy(t) | —00 < t < 0o} is Poisson with

t

E[Doo(t)] = / Pr(S <t — 1) A(r) dr. (28)

—00
4. For all ¢, Qo (t) and Dy (¢) are independent random variables.

The corollary to this theorem yields results that we refer to [Eick et al., 8] as the
“physics” of the M,/G/oo queue. Notice how the transient result for the departure

process D, anticipates the Poisson-in-Poisson-out result of Burke’s theorem [Burke, 1]
for the M /M /1 queue in steady state.

Corollary 2.6 [Eick, Massey and Whitt, 8]. We have the following identities for the

mean:
E[Qx(] = E[/tts)\(r)dr:| = E[A(r — So)]ELS]. (29)
Moreover if A(1) = [ A (k) e* dk, then
E[Ou(0)] = A(KELS] - E[*%]. (30)
If A(t) = a + bt + ct?, then
E[Q ()] = (A(r — E[S.]) + ¢ - Var[S.])E[S]. 31)

Finally, if X is general, but Pr(S > 1) = e " for all r > 0, then

R 3 3 iarctan(k /)
E[0n )] =~ _ 20 € . 32
p+ik opn JT+R2u2
The formula for the mean offered load in (29) illustrates a recurring theme in
queues with time-varying rates: there is a phase lag between the times of peak arrivals
(i.e. A(2)) and the times of peak load (i.e. E[Q(#)]). Examining the Fourier transform
of E[Q(?)] in (30), we not only see this phase lag but we also see a damping of all the
amplitudes of E[ O (¢)] compared to A(¢)E[S]. This behavior is more explicit in (31) for
the special case of a quadratic arrival rate. Here, the phase lag is precisely E[S.] and the
amplitude is “pushed down” by the amount ¢ - Var[S.] - E(S) when c is negative which
corresponds to a A that attains a finite maximum. Similarly, the amplitude is “pushed
up” by the amount ¢ - Var[S.] - E[S] when c is positive which corresponds to a A that
attains a finite minimum. Moreover, the quadratic results suggest that for fixed E[S.],
the damping effect is amplified by increasing Var[S.].
Moreover, since the phase lag behaves more like E[S.] than E[S], we know by (31)
that E[S.] = E[S?]/(2E[S]) which for fixed mean is dependent on the distribution of S
through its second moment. This has major implications for holding times with heavy
tail distributions. They can have reasonable means but create enormous phase lags be-
tween the times of peak arrivals and peak loads. In the next section, we use these sto-
chastic integration tools to model wireless networks.
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2.4. Offered load models for wireless networks

Now we show how this stochastic integration theory can easily be adapted to construct
the offered load model for a wireless communication network. These offered load wire-
less models are developed in the trilogy of papers [Massey and Whitt, 34,36; Leung et
al., 26]. Wireless communications inspires a new way of looking at the notion of “ser-
vice” for queueing models. In queueing theory, service is traditionally viewed as an
interval of time and in communications modelling the service time models the conversa-
tion time or connection time. However, wireless mobiles move during their connection
times. This brings both temporal and spatial dimensions to the notion of service so that
now it becomes a “path through a location space.” Moreover, if a node in a queueing
network is defined to be a place where a customer receives service, then a wireless net-
work is a concrete setting for defining an “infinite node” network. Every point in space
should be a place to receive service so we can easily motivate the location space to be a
subset of R.
Let I" represent a base station cell as the subset of the location space and

L, (t,t) = location at time ¢ for nth mobile,

given that it initiates a call at time t, where the L, are mutually independent random
processes in . We can then construct the following quantity:

QOr(t) = number of calls in progress in cell I" at time ¢

using stochastic integration, i.e.

Or() :/ UL gy enrery dA(T). (33)

—00
In [Massey and Whitt, 34], we refer to this as a Poisson Arrival Location Model (PALM).
The stochastic calculus gives it the following properties.

Theorem 2.7. The following results hold for the PALM process

1. For all ¢, Qr(¢) has a Poisson distribution and

t

E[Or(®)] :/ Pr(L(z, 1) € T) A(1)dr. (34)

—00

2. If A is another cell, then Qr(¢) and Qa(¢) are independent random variables if and
only if I" and A are “disjoint.”

3. Forallt < u,cell I, and cell A, we have

t

Cov[Qr (1), Qa(w)] :/ Pr(L(t,t) € I, L(r,u) € A)A(r)dr.  (35)

—00

The last two results look almost contradictory. One result states that O and Q 5 are
independent random variables, for two disjoint cells I' and A, but the other result gives
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a formula for the covariance between the two random variables. The critical difference
between these two results involves when we compare the two random variables. Saying
that Qr and Q, are independent at the same time means only that for offered load
traffic all customers and their service requirements are independent entities and so no
one person can exist at two different places at the same time. However, this means
that comparing these two random variables at two different times means that it is then
possible for one customer to move from one cell to another in the elapsed time and thus
produce a nonzero correlation.

This type of independence result for the transient behavior of the PALM model
anticipates the “product form” results for stochastic networks as formulated by Jackson
[16] and Kelly [22]. A special case of the PALM model is the finite node version of
infinite server networks. These models have been discussed in the papers of Keilson and
Servi [21].

2.5. Offered load models for packet network links

Now we show how the stochastic integration theory can be adapted to construct the
offered load version of the total bandwidth process for a link in a packet network (see
[Duffield et al., 6]). Packet networks take advantage of the fact that customers do not use
a fixed amount of resources (like bandwidth) for the duration of their connection time.
The asynchronous behavior of the resource requests, both due to when customers arrive
and their variations per customer in the amount resources used during the connection
time, contributes to the multiplexing gain of systems like ATM. Given

B, (t,t) = bandwidth used at time ¢ by the nth connection,

which was initiated at time 7, where the B, are mutually independent random processes
in t. We can then construct the quantity

R(t) = total amount of bandwidth in use at time ¢,

using stochastic integration, i.e.

R(t) = / By (1. 1) dA(7). (36)

o0

We can interpret R(¢) to be the random packet arrival rate at time ¢. In this manner we
construct a non-Poisson, packet level, traffic arrival process out of a Poisson, connection
level, traffic arrival process. The stochastic integral properties give us

Theorem 2.8 [Duffield, Massey and Whitt, 6]. The total bandwidth model yields the
following set of formulas:

1. Foralltandn =1, 2, ... we have,

t

C™[R(1)] = / E[B(z, )" ]|A(r) dr. (37)

—00
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2. In particular we have for all 7,

E[R(t)]:/t E[B(T,)]Ar(r)dr (38)

and N
Var[R(1)] = / t E[B(r.)*]A(r) dr. (39)

3. Forall f < u, we have N
Cov[R(t), R(w)] = /t E[B(z. 1)B(z, w)|A(7) dt. (40)

Now we consider a simple bandwidth function model. Only the connection time is
random and we assume that all customers agree to use no more that a specified amount
of bandwidth that is a function of their connection time.

Theorem 2.9 [Duffield, Massey and Whitt, 6]. If B(z,t) = b(t —7) when Sy(;) >t —7
and zero otherwise, where b is a deterministic, non-negative function, then
C™[R(1)] = E[b(Se)"A(t — So)]ELS] A1)

and

/oo o [R(t)]eikt dr = i(k)E[S] . E[b(Se)n] - Epn [eikSe]‘ 42)

[e.¢]

Just like the M;/G /oo queue, the total bandwidth model has its own laws of
“physics”.
Theorem 2.10 [Duffield, Massey and Whitt, 6]. If A(#) = a + bt + ct?, then
CP[R(®)] = (M(t — Ep[Se]) + cVary [S.DE[b(S)" |ELS], (43)

where for any bounded continuous function f we define Eyn[ f (Se)] = E[D(Se)” f (Se)]/
E[b(S.)"]. Finally, combining this quadratic behavior with an increasing b gives us

E[Se] < BEp[Se]l S EpelSel < - S Epl[Se] < ---. (44)
but if b is decreasing, then
c SEp[Se] < S EplSe] < BplSe] < E[Se] (45)

Moreover, if X is a general function of time but b(#) = b when ¢ belongs to some subset
of time A and b(¢) = 0 otherwise, then R(¢)/b has a Poisson distribution with

R(1)
E|:T:| =E[A(t —Se); Se € A] - E[S]. (46)

Combining this with quadratic A, we have a phase lag equal to E[S. | Se € A].
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The tail behavior of the bandwidth process can be analyzed by the following simple
upper bound to its own Chernoff bound.

Theorem 2.11. For x and ¢ such that x > E[R(¢)], we have

log Pr(R(r) > x) < _—1/ 10g<1 +|BWL(1), 1) L[R(t)]) dy,
|BU;.(1), D)oo JE[RM * Var[R(1)]
where U, (¢) is independent of B with
fjoo A(r)dr
Pr(U <s)=—"F——— 47
r(Us(t) < s) R (47)

and for any random variable X, | X |, = inf{x | Pr(|X| < x) = 1}.

Now we apply much of the insight found in the exact analysis of offered load
models to do an approximate analysis of loss models.

3. Loss models

The offered load of communication resources requested by the customers may exceed
the amount of resources that the communication service really has. One way of dealing
with this finite amount of resource is to assume that the queueing system is a loss model.
We then assume that customers arriving to request resources currently in use are rejected
and leave the system. This is a natural model for realtime communication services like
voice calls and video on demand. Our canonical nonstationary queueing model here is
the M,/G/L/L queue which is the time varying analogue to the classical Erlang loss
model [Erlang, 9].

We compare the various approximation methods for the M,/G/L/L queue as
found in [Green and Kolesar, 11; Jagerman, 17]. We also discuss the various approx-
imate algorithms that this time varying analysis inspires for telecommunication applica-
tions.

3.1. The M;,/G/L/L queue

Our canonical model for a loss system is the M/G/L/L queue, which has Poisson
arrivals, generally distributed holding times, L servers, and no buffer, so arriving cus-
tomers are lost or blocked when all the servers are in use. If QO is the steady state
number in the M/G/L/L queue, then foralln =0,1,...,L

p"/n!
S i /iD

where p = AE[S], A is the mean Poisson arrival rate and S is the random service time.
Notice that this distribution is only influenced by the random holding time S through its

Pr(QL=n) = (43)
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mean E[S]. Thus the M/G/L/L has the same insensitivity property that the M/ G /oo
queue has, where the corresponding Q.. has a Poisson steady state distribution with

E[Qx] = p.
If we let B, equal the function

By = /! (49)
> i—ox7/jh
then B, (p) = Pr(Q; = L) which is the classical Erlang B formula and
Br(p) =Pr(QL =L) =Pr(Qo =L | Qs < L). (50
Finally,
E[QL] = p(1 = BL(p)), (5D

which is referred to in classical telephony as the carried load. A theme that is explicit
here in these exact formulas is one that is the crux of the approximation methods for loss
models with time varying rates. We use the exact analysis of the offered load models
with time varying rates to approximate the blocking behavior and mean carried load of
the loss models.

First we discuss how time varying rates force us to rethink what is meant by block-
ing. Consider the following “metrics:”

Jo MOPH(QL(t) = L) dt
) (o dr '

These metrics are, respectively, the probability that all channels are in use at time ¢,
the fraction of time during [0, T'] that all channels are in use, and finally, the ratio of
the average number of customers blocked to the average number of arriving customers
during [0, T']. For constant rate steady state analysis, all these metrics equal the Erlang
blocking formula. In the world of time varying rates we must distinguish between them
and select the most appropriate metric in the context of some specific communications
problem.

In [36], we proved that the last metric can be viewed as the expectation of a ra-
tio. If we sample the blocking probabilities by a Poisson process of the same rate but
independent of the M,/ G/L/L queue, then

E[foT Pr(Q.(1) = L)dA()
A(t)

1 T
Pr(QL(1)) = L), ?fo Pr(Q.(t) =L)dr, and

_ Jy MOPHQL() = L)dt'

52
Jy Ay de Y

‘A(T) > 0}

3.2. The modified offered load approximation

Two standard approximations used for the M,/G/L/L queue are modified offered load
(MOL) (see [Jagerman, 17]):

Pr(Q.(1) = L) ~ BL(E[Qx(D)]) (53)
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Figure 1. Modified offered load vs. pointwise stationary approximations.

and the pointwise stationary (PS) (see [Green and Kolesar, 11]):
Pr(Q.(t) = L) =~ BL(A(t)ELS]). (54)

In this section we show that for most modelling cases of interest, the MOL approxima-
tion is superior to the PSA approximation. For example, compare the curves in figure 1.
Much of the behavior here can be explained by the physics of the M,/ G /oo queue as
discussed in the previous section as well as [Eick et al., 7,8]. The exact blocking proba-
bilities in figure 1 (solid line) are for the case of A(r) = 10 4 5sint, S is exponentially
distributed with E[S] = 1, and L = 20. Here the largest blocking value is 0.02 hence
the MOL approximation (long dashed lines) is close to the exact answer whereas the PS
approximation (short dashed lines) is not even close. The Erlang blocking formula 8 (-)
is an increasing function of the offered load. This means that since the PS approxima-
tion is B;, applied to A(¢)E[S], then PS peaks the same times that the arrival rate peaks.
Thus we see in figure 1 that there is a lag between the times of peak arrivals and peak
blocking. Since the exact blocking probabilities are well approximated by MOL or S,
applied to E[ Q. (¢)], the offered load results of corollary 6 explain this lag. Moreover,
(2.27) shows the amplitude damping of E[ Q.. (¢)] compared to A(¢)E[S] explains why
the PSA curve in figure 1 has a much larger amplitude than either the MOL or the exact
probability curve. Finally, notice that the PS and MOL curves intersect at the peak of
the MOL curve. Observing that from (32), the case of exponentially distributed holding
times gives us

d
EE[Qoo(t)] = A1) — LE[ Qo ()], (55)

it is clear that E[Q(?)] equals A(¢)E[S] (recall that E[S] = 1/u) exactly when the
derivative of E[Q.(?)] is zero. These are precisely the times of extreme values for
E[Qc(®)].

Here we have numerical evidence of how the MOL approximation serves as a
bridge between offered load models and loss models. This now makes the analysis
of offered load models are relevant to the study of loss models. We have also buttressed
this approximation technique with exact bounds for the error between MOL and the ex-
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act distribution. One of the results is the following for the M,/M/L/L queue. For the
proof, we refer the reader to [Massey and Whitt, 35].

Theorem 3.1 (Massey and Whitt, 1994). If A is differentiate and bounded on [0, 00), its
derivative )’ is also bounded on [0, 00), and E[ Q. (0)] = A(0)/u, then

Al -] ||
sup [E[QL ()] — E[ Qo) ](1 — BL(E[ Qe (1)]))] < o P

>0

where |A] = sup, > [A(?)].
3.3. Server staffing for call centers

Now we consider the application of server staffing for the M;/M;/L;/L; queue. By
stochastic ordering, if Q;(0) = Q0 (0), then Pr(Q.(#) > L) < Pr(Q(t) = L).
Given ¢, let the relation (1/+/27) fl;fg) e /2 dx = ¢ define Y (¢). Now we define L,(¢)
where

L) =[a®) + v (©)Va 0] (56)

and q(t) = E[Q(t)]. The motivation for L,(¢) comes from the fact that Q.. (¢) has a
Poisson distribution. Thus we have ¢(¢), the mean of Q. (¢), plus ¥ (¢) times /q(t),
the standard deviation of Q. (¢). We then have for all t > 0,

Pr(Qoo(1) = Li(e)) <Pr(Quo(t) = q(1) + ¥ (e)y/q (1))

(0w —q() .
_Pr< NG N’(”) ©

The same argument as above gives a lower bound for the delay probability of the
M,/M,/L, queue. Using L,(e) approximately gives ¢ for both the delay and blocking
probabilities. For more details on this server staffing algorithm, see [Jennings et al., 18].
This work also led to a Lucent Technologies patent (U.S. patent number 5,923,873).

3.4. Private line services

Now consider the application of loss systems to capacity management process flows
for leased service as discussed in [20]. We can model the number of DSO lines in
inventory as an M,;/M/L/L queue. For this application A(¢) equals average customer
arrival rate at time ¢, 1/ the average circuit holding time, L the total number of DSO
circuits in stock, and Qy (¢) the random number of leased DSO circuits at time . Whereas
the average holding time for the M,/G/L/L in the context of telephone trunklines is
5 min, an average holding time for private line services may be 2 years. Thus we have a
communications example where steady state analysis has no relevance.

Given a fixed time interval [0, T], the cost of providing a unit circuit for a unit
time a., the revenue from a unit circuit for a unit time a,, and the initial number of
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Figure 2. Diagram of capacity management process flows.

DSO circuits Qy (0), the primary goal now is to determine the inventory level L of DSO
circuits needed to maximize the profit function IT where

T
L) =a, / E[QL(1)]df —a.LT. (57)
0

We use the knowledge of offered load models to construct an approximate profit function
which we call the sorted offered load approximation (SOL):

T
MsoL(L) = a,/ min(E[ Qoo ()], L) dr — a.LT. (58)
0

The SOL approximation serves as an upper bound for IT and is significantly easier to
compute. It is sufficiently accurate for solving the profit optimality problem. Its optimal
solution can be expressed analytically which yields simple rule of thumb interpretations
of optimality. Finally, the simple form of its optimal solution leads to a fast algorithm
for computing it.

Below is the fundamental result for the sorted offered load approximation.

Theorem 3.2. If we extend IIgor, to be a function of a continuous variable, then it
achieves its maximum at

Lmax = (g« (a_L T) P (59)

where g, is the decreasing rearrangement of g and q(t) = E[Q(¢)]. This is also the
solution to the equation

1 T
ar— / Lig(t)> Lnar) A = - (60)
T Jo
Moreover, the approximate maximum profit will be
T
[TsoL(Lmax) = ar / g« (1) de. 61)
(ac/ar)T



190 MASSEY

Table 1
Parameter values used in numerical example.

Arrival rate Holding time  Initial load Revenue Cost Time interval
At) 1/ 010 ar ac T
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Figure 3. Graphs of the offered load and the sorted offered load as a function of time.

In table 1, we list the specific values that we use for the numerical example in this
section. In figure 3 we plot both ¢ and g, side by side. Since ¢ is an increasing function
for this example, then g, is merely the time reversal over the interval of length 20. Along
with DSO units we also use DS1 units where 1 DS1 channel equals 24 DSO channels. In
figure 3, we plot three quantities that estimate the average profit for a given number L
of channels in inventory. The height of the bars corresponding to STAT (the black ones)
estimates this profit using the steady state formulas for the carried load (STAT is for
stationary). We do this by using the constant arrival rate that is a time average of the
given rate function. The bars for SOL (the white ones) approximate the profit by using
the sorted offered load estimation for the carried load. Finally, the bars for MOL (the
gray ones) uses the modified offered load approximation of the carried load to estimate
the profit.

In the case of an increasing arrival rate, we can prove that MOL always underes-
timates the carried load (see [Massey and Whitt, 35]). Since SOL always overestimates
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Figure 4. Graphs of the STAT, SOL, and MOL profits as a function of the total number of DS1 lines
provided.

the carried load, we can see by inspection that both of them are doing a good job of
approximating the true profit function here. The STAT bars suggest that the maximal
profit can be attained by using 22 DSI lines. This is doubly wrong. The true optimal
number is 15 DSI lines which SOL estimates accurately and the MOL verifies. Not only
is the true maximal profit half of what STAT estimates, STAT suggests a profit that is
one fourth the true maximal profit. This example shows where nonstationary analysis
makes a significant improvement over steady state analysis.

The above problem is an example of the interaction between queueing models and
profit. In general, there is a natural relationship between pricing models for communica-
tion services and queues with time-varying rates and we have begun to explore this issue
in [Lanning et al., 25]. The arrival rate for a queue can be viewed through the economic
lens as “demand.” Just as price shapes demand, we can model a queue with time varying
rates as one where the arrival rate is a function of price. For loss models, blocking is
a quality of service (QoS) constraint that the service provider may sell as a commod-
ity. The queueing and economic issues then intertwine as a given price determines an
arrival rate which determines a given QoS level. Queueing analysis can now be used to
help service providers determine if they are selling precisely the QoS level that they are
promising.

More recently, we have extended this type of economic queueing analysis to band-
width exchange and provisioning. See [Hampshire et al., 14] as well as [Hampshire et
al., 15] for more details.

3.5. Time reversible Markov chains

We now want to generalize the notion of a modified offered load approximation. The
key to formulating this generalization lies in the theory of time reversible Markov chains.
For the purposes of these applications, we do not need to define what a time reversible
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Markov chain is (see [Kelly, 22] for details), we need only list some of the properties
that these chains possess:

Tree condition. If the state space diagram for the Markov chain is bidirectional and, as
an undirected graph, a tree (acyclic), then it is time reversible.

Independent joints. The joint process of two independent, time reversible Markov
chains is also a time reversible Markov chain.

Restrictions to subsets. 1f " is a subset of the state space for a Markov chain, delete
the transitions of the chain that leave I". The new chain inherits time reversibility from
the first one. Moreover,

PriXr=i)=Pr(X=i|Xel) (62)

foralli € I', where X and X are the steady state limits for the original and new chains,
respectively.

Using the first and last properties the M /M /oo queue is time reversible and the
M/M/L/L queue is the restriction of the M /M /oo infinite server model and so (50)
is seen to be a special case of (62). Hence the MOL approximation method for the
Mt/G/L/L can be viewed as a “time reversibility” approximation.

This suggests a general recipe for constructing MOL approximations for the tran-
sient behavior of a Markov chain with time varying rates:

1. Show that this chain is the restriction of a Markov chain on a larger state space and
this larger chain would be time reversible if it had constant rates.

2. Solve for the transient behavior of this larger chain.

3. Condition the transient probabilities of the larger chain to stay in the smaller state
space of the original chain. This is the MOL approximation in general but also the
exact answer for the steady state, constant rate case.

In the next section, we apply these generalized MOL approximation methods to a

communication network.

3.6. Circuit switched networks

Recall that the classical circuit switch network model, as a Markov chain, is time re-
versible. This follows from the methods listed here for constructing time reversible
Markov chains since

1. The M /M /oo queue is time reversible.
2. An independent collection of M /M /oo queues is time reversible.

3. The classical circuit switched network model is the restriction of independent
M /M /oo queues to a smaller state space.
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Therefore, the circuit switched network model is a time reversible Markov chain
and we have an exact formula for its steady state distribution. Since the transient distrib-
ution for an independent collection of M;/M /oo queues is known, we then have a MOL
approximation for a circuit switched network with time varying rates.

Now we numerically investigate the following example from [Jennings and
Massey, 19]: a two-link circuit switched network. We consider the three numerical ex-
amples given in our parameter table 2.

Table 2
Parameter values used in numerical example.
CSN Arrival rate Arrival rate Arrival rate Channels  Channels
case # 1 Ag(?) r1(1) A (1) cl )
1 10 + 5sin(0.57¢) 10+ 5sin(0.57¢) 10 4 5sin(0.57¢) 36 36
2 3 4 sin(0.47t) 10 + 3sin(0.471) 3 +sin(0.47t) 10 10
2 3 4 sin(0.27¢) 10 + 3sin(0.27¢t) 3 4 sin(0.27¢t) 10 10
Type O Blocking Type 0 Blocking
0.074 0.50
0.06 045
0.05 0.40
0.04 0.35
0.03 0.30
ooz 0.25
Lty
00 & % 0.20
0.0 0.15
5 6 7 8 9 10 5 6 7 8 49 10
Type O Blocking
0.501
045
0.4
0.35
0,30
0.25
0.2
0.15

7.0 g8.0 9.0 1090

Figure 5. Graph of type 0 blocking probabilities for CSN cases 1, 2 and 3.
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In figure 5, we plot the blocking probabilities (left to right, case #1 through case #3)
for type O traffic (the calls that use channels from both links) where we compare the ac-
tual blocking probability (the light gray curves, where the numbers come from averaged
numerical simulation), to the MOL approximation (the black dashed curves), and the PS
approximation (the black solid curves).

For case #1, the actual blocking is small (under 2%) and MOL does significantly
better than PS. For case #2, the actual blocking is high (25-50%) and PS does a better
job than MOL. This is due to having arrival rates that are not varying too quickly in
time. Finally, the parameters of case #3 differ from case #2 only in a fivefold scaling up
of the frequency for the sinusoidal arrival rates. Here, neither the MOL nor the PS ap-
proximations work well. In practice, the MOL approximation is very useful since circuit
switched network is typically designed for low blocking. Moreover, it can accommodate
the changes in the blocking behavior due to different holding time distributions that give
the same mean. This is something that the PS approximation cannot do.

This classical circuit switched network model has new applications with time vary-
ing rates. It can model the type of alternate routing that occurs when there is a link failure
at a specific time. After that moment, all traffic on that link is rerouted.

4. Delay models

In contrast to loss models, another way to deal with limited communication resources is
to have customers wait until the necessary resources are available. Now we have a delay
model. This is a suitable model for communication services like file transfers that are
not necessarily done in realtime. The M,/M,/1 and M,/ M, /L, queues are the canonical
nonstationary queueing models that we discuss in this section. We develop a theoretical
asymptotic analysis framework that rigorizes the fluid and diffusion analysis of [Newell,
37]. The limit theorems obtain here give us approximation methods that complement to
work of Ong and Taafe (see [40,41]), [Rolski, 46], as well as [Yin and Zhang, 51].

4.1. The Mt/M,/1 queue

We discuss the first of two canonical examples for delay models. If Q is the steady state
number for the M/M/1 queue, which has Poisson arrivals, exponentially distributed
holding times, a single server, and an infinite buffer, then for all non-negative integers n:

)\’ )\‘ n
Pr(Q =n) = (1 - —) (—) , (63)
w)\

M Mt >0y
w 1O

Figure 6. The M;/M;/1 queue.
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for A < u (otherwise Pr(Q = n) = 0 for all n) where X is the mean Poisson arrival
rate and the random service time S is exponentially distributed with 1/u = E[S]. Using
Little’s law to obtain the mean queueing delay E[ Q] from the mean queue length E[ Q]
gives us for A < p

E[Q] = Mi'u and E[D] = *

1—A/p o =)

There are two useful methods for constructing the M,/ M,/1 queue length process.

First we can construct the transition probabilities for the M,;/M,/1 queue by defining
the vector p(¢), where

p() =[Pr(Q) =0), Pr(Q(r) =1), Pr(Q(1) =2),...], (65)

to be the solution to the differential equation

(64)

d
Ep(’) = pDA®), (66)
where A(¢) is the tridiagonal matrix
—A A
Mt _()"t + /uLt) )\'t
A@) = (67)

Mt — (A + 1)

The other constructive method is to build the random sample paths of the M,/ M, /1
queue out of Poisson process using a reflection mapping. We can show that

Q@)= X(t)— inf X(s) (68)

<<t

X((t) = 1'[1(/ A(s) ds) — H2</ w(s) ds), (69)
0 0

where I1; and I1, are independent, standard (rate 1) Poisson processes and Q(0) = 0.

We use the same method of asymptotic analysis for both constructions and refer to
it as uniform acceleration. We achieve uniform acceleration by scaling both the arrival
rate A, and the service rate i, with the same parameter 7, and analyzing the asymptotic
behavior of resulting process Q" as n — o0o. The uniformly accelerated transition
probabilities are now given by:

with

d
Ep"(t) =p"(OnA), (70)

and the uniformly accelerated random sample paths are given by:

Q") = X"(t) — inf X"(s), (71)

0<s <t
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Figure 7. The uniformly accelerated M;/M; /1 queue.

X'(t) = H1</ nA(s) ds) - H2</ nu(s) ds). (72)
0 0

Uniform acceleration is the nonstationary analogue to steady state analysis. It also gen-
erates limit theorems that are the basis for time varying equilibrium, fluid and diffusion
approximations of the original queueing system.

The transition probability analysis is given below and proved in both [Massey,
31,32]. Generalizations of this type of analysis can be found in [Yin and Zhang, 51].

where

Theorem 4.1 [Massey, 31]. If we let

. f: A dr
p () = sup —; , (73)
0<s<t L My dr

p*() < 1,and p(t) = A(¢)/u(t), then
Pr(Q"(1) = n) = (1 - p()) p(1)"

PO [ e n+ 1)) . < 1 )
_ o =),
T ((1 s A T LA e

as n — oo. In particular,

p'(t) 1
P n 0) = _ ol — |, 74
("0 >0 =r0 - i saor + (n2> i
and
p(1) P ()1 + p(1)) 1 )
E[0"(1)] = - o —=). 75
('Ol =125 ~ eoa sy © <n2 )
Moreover, if p*(t) > 1, then
Pr(Q"(t) =n) =0 (76)

for all n as n — oo.

Now we state the limit theorems that follow from the sample path analysis. The
proofs of these results can be found in [Mandelbaum and Massey, 27]. All the sample
path results in this section draw heavily from the theory of strong approximations as
discussed in [Ethier and Kurtz, 10].
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Theorem 4.2 [Mandelbaum and Massey, 27]. If A and u are locally integrable functions,
then lim,_, o (1/7) Q" () = 09(1) as. uniformly on compact sets, where

0V = fo [As — uslds — Og}it[?»r — w,]dr. (77
Moreover,
. 0"t =109 4 )
1 = 1),
Jim NG 0@
where
00 (1) = B( / s + mds) ~ inf B( / D+ 1] dr), (78)
0 yedr 0

{B(t) | t = 0} is standard (mean 0, variance #) Brownian motion, and finally
t
<1>,={0<s<r( / [xr—ur]dr=Q<°>(r)}. (79)

These random sample path limit theorems literally complement the transition prob-
ability limit theorems. The former results are zero when the latter results are nonzero
and the reverse holds as well.

For more insight into the formulas, we now reduce these fluid and diffusion limits
to the constant case. Assume that A and u are both constant over the interval [0, ]. We
then have Q©(t) = (A — ) *¢, assuming that Q®(0) = 0, where x* = max(x, 0). We
then have

{r}, ifr<up,
®, =110,2], ifA=np, (80)
{0y, ifa>up,

and so
05 lf)\, < ,u/,
Q(l)(t) _ ) B2xr) — Ogit BQAs), ifl=pu, 1)
B((A—{—p,)t), if A > .

4.2. Virtual waiting time for the M;/ G /1 queue

The same analysis as above gives us a new result for the fluid and diffusion limit of
the virtual waiting time (or workload) process for the M,;/G/1 queue. We construct a
process {V (¢) | t > 0}, where

Vit)=Y(t)— inf Y(s), (82)
<s<

XX
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with
A()

Y(t)y=>)_S, —z:f Saw dA(T) — 1. (83)
n=1 0

The accelerated version of this process is formed by first representing A(¢) as
l'I(fot A(r)dr). We then define V'(t) = Y"(t) — infoc,<; Y7(s), where

(g fy A(r)do)

Y=Y S —nt (84)

n=1

The physical interpretation is that we are simultaneously scaling up the arrival rate
of the jobs and their processing rate. The sample path analysis for the M,/ G/1 queue is
then

Theorem 4.3. If {V'(¢) | t+ > 0} is the uniformly accelerated virtual waiting time
process, then lim, o (1/7)V(¢) = V (), where

VO@t) = sup / (A(0)E[S] — 1) dr, (85)

0<s <t

and lim,_, o /7((1/mV"(t) — VO (1)) 2 v (), where

v = B(/ AMr)dr - E[52]> — inf B(/S,\(f)df E[SZ]), (86)
0 sey,

0

{B(t) | t > 0} is standard Brownian motion, and
t
v, = {0 <s < t( / (MT)E[S] — 1) dr = v<°>(z)}. (87)

4.3. The M,/M,/L; queue

Our second canonical example of a delay model is the M /M /L queue, which has Pois-
son arrivals, exponentially distributed holding times, L servers, and an infinite buffer.

I ©,
M @ B QALY

©

Figure 8. The M;/M;/L; queue.
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If Q has the limiting distribution for an M /M /L queue, then for all non-negative inte-
gers n,

n

% ifn <L,
G(p)-Pr(Q =n) = : 88
(p) - Pr(Q =n) oL (p/L)y—L o (83)
L! ’
where p = E[Q] = AE[S] and
Loxi oyl x/L
GO =) —+H=—— (89)

ot L =/l

whenever p < L, otherwise Pr(Q = n) = 0 for all n. Moreover, the probability of
queueing delay is

BL(p)

PrQ = L) =PuD > O = B (op/L

(90)

The function B, is the Erlang B formula given by (48) and (90) is the classical Erlang
C formula for multi-server queues (see [Cooper, 3, p. 91]).

Now we define the M,/M, /L, queue length process {Q(¢) | ¢t > 0} using a sample
path construction

Q) = Q(0) + H1<f0 As dS) - Hz</0 15 (Q(s) A Ls)dS), oD

where I1; and II, are two independent, standard Poisson processes and x A y =
min(x, y).

This motivates us to define a new variation on uniform acceleration for the
M,/M,/L, queue, namely

Q"(t)EQ"(0)+H1</ n)»‘vdS>—Hz</ nus(%Q"(S)/\LJdS)
0 0
:Q”(O)+1‘I1</ n)»‘vdS>—Hz</ /«LS(Q”(S)/\an)dS)-
0 0

Defining the service rate for the M;/M,;/1 queue as p,1(p,-~0y, We see that the
two uniform acceleration variants are the same for the single server case. These new
asymptotics have the call center service provider interpretation of scaling up the supply
(number of servers) in response to a similar scaling up of the demand (arrival rate).

Using the theory of strong approximations (see [Ethier and Kurtz, 10]), we can
obtain a sample path analysis that yields the following fluid and diffusion limits.
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Theorem 4.4 [Mandelbaum, Massey and Reiman, 28]. If A and u are locally integrable

functions then lim,_, . (1/n7)Q"(t) = 09() as. converging uniformly on compact
sets, and
t
01 =00 + / hs = 11 (QV(5) A Ly) ds. (92)
0
Moreover,
n(t) — ©) (¢
im 270 =100 a0y
n—> S

and

t
0V (1) =0M0) - f 1510 <2y Q" ()T ds
0
t

t
+ f Ms]l{Q<0>(s)<Ls}Q(l)(S)_dS+B( f AS+M‘Y(Q<°>(s>ALS)ds).(93>
0 0

The construction of the diffusion process involves a general notion of a nonsmooth
derivative. If o is a real valued function that has right and left derivatives, then its
scalable Lipschitz derivative is defined to be

Aa(x;y) =o' (x+)y" —a'(x—)y~. (94)

The function Aw(x;-) is Lipschitz, i.e. there exists a constant M = max(|a’(x+)],
|a’(x—)|) such that for all y; and y, we have

|Ace(x; y1) — Aa(x; y2)| < My — yal. (95)
The function Aa(x; -) is also scalable, i.e. we have
Aa(x;yy) =y Aalx;y) (96)
for all y > 0. These derivatives have the following properties.

Theorem 4.5. Scalable Lipschitz differentiability is closed under operations that yield
the following formulas:

e Addition formula

Ao+ B)(x;y) = Aa(x; y) + AB(x; y). o)
®
ik 3 v @ Bt @©An L

®

Figure 9. The uniformly accelerated M;/M;/L; queue.
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e Multiplication formula

AlaB)(x;y) = a(x)AB(x; y) + B(x)Aa(x; y). (98)

e Composition formula

Ao B)(x; y) = Aa(B(x): AB(x: ). (99)

e Maximum formula

AV B)(x;y) =Aa(x;y) - Lig=payy + ABX;Y) - Lig)<poo)
+AB(x; y) V Aa(x; y) - Lig)=p)-

We can write the diffusion equation (93) more compactly as

00 =070 +/ Aa(QV(5); M (9)) ds + B(/ a((Q9s) A LS))ds)
0 0

where
a(x) =A — ;- (x AL) and a((x)) = A + ;- (x A Ly), (100)

and get the following set of derivative formulas.

Corollary 4.6. The M,/M,/L, fluid limit, given Q®(0), is the unique solution to the
autonomous differential equation

%Q%) =a(QV®). (101)

Moreover, the mean, variance, and covariance for the M, /M, /L, diffusion limit, solve
the derivative formulas:

%E [0V ()] =E[Aa(QV(); 0V (1))]. (102)
%Var [0V )] =2Cov [0V (1); Ax(QV(1); 0V ()] +((Q” 1)), (103)

and fors <t
%Cov [0V (5). 0P ()] =Cov [0V (s); A (QV(1): 0V (1)].  (104)

Under the following conditions, the diffusion derivative formulas become au-
tonomous differential equations.

Corollary 4.7. If the set of time points

{1090 =L} (105)
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has measure zero, then {Q(¢) | + > 0} is a Gaussian process whose mean, variance,
and autocovariance solve the autonomous differential equations:

d
FE[VO]=—mT000 < E[QV O], (106)
%Var [0V (1] = —2uLp00)<L)Var [QV O] + A + 1 (Q () A L), (107)

and fors < ¢

%COV[Q“)(S), 0V(1)] = =L, Cov [0V (s), 0V ()] (108)

The times that Q@ (r) = L, are defined to be times of critical loading. Notice that a
similar result can be seen in the constant rate case for the M/M/1 queue (see (81)).
Here critical loading corresponds to the case of A = p. When this occurs over the entire
interval [0, t], we have the only situation for the M/M/1 queue that Q" is reflecting
Brownian motion and not a Gaussian process.

More recently, we have shown that this fluid and diffusion analysis extends to the
virtual waiting time process for multiserver queues (see [Mandelbaum et al., 30]).

Finally, this analysis is a special case of a more general asymptotic analysis for
Markovian service networks as discussed in [Mandelbaum et al., 28]. These networks
incorporate many of the important features for call centers including: multiple servers,
abandonment, priorities, bulk arrivals, network routing based on service completion, and
network routing based on abandonment. We also show in [Mandelbaum et al., 28] that
all Markovian service networks have fluid and diffusion limit theorems. Moreover, these
fluid and diffusion approximations solve differential equations of a significantly smaller
dimension than the that of the state space for the original queueing process.
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