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Abstract Customers of bandwidth services can be divided into two distinct groups: those
customers requesting bandwidth for the future and those desiring bandwidth im-
mediately. We develop a dynamic network provisioning methodology that mini-
mally satisfies the QoS (blocking probability) requirements for the 'on-demand’
customers. Our method is sufficiently general and captures time varying trends in
the demand for services as well as different bandwidth requests for the multiple
classes of customers. This allows a network provider to be efficient in reserving
excess bandwidth for forward contracts. Asymptotic results and bounds for the
Erlang loss system are invoked to obtain simple approximate solutions to this
bandwidth provisioning problem.
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Introduction

In this paper, we develop a bandwidth provisioning scheme for a service net-
work that satisfies the “on demand” customers. This sets the stage for providing
bandwidth to serve customers with long-term contracts. Consider two broad
categories of demand:

1 Immediate Demands
2 Forward Demands

Immediate Demand (ID) is the traditional category where customers make re-
qguests for bandwidth and expect the resources immediately. One advantage to
traditional service is that there are historical records and statistical techniques
for forecasting demand, which is expected to be stable, and describing its sta-
tistical properties, such as distributional information on arrivals and holding
periods. One disadvantage however, is that there are corresponding expecta-
tions on the part of customers for a high quality of service, i.e., low blocking
rates.

Forward Demand (FD), on the other hand, is the service category that is ex-
pected to grow rapidly with the increased availability of bandwidth in the Inter-
net's infrastructure and universal high-capacity access to the Internet. Consider
the following examples of application services that will create FD. Schools that
offer distance learning, such as MIT or U.C. Berkeley, want to have bandwidth
available from the campus to each learning site commencing at 10 am every
Monday and Thursday during the term. Large corporations want contracts
for guaranteed bandwidth supply for carrying internal communication traffic.
Other carriers lease capacity for an extended period of time to defer capital
investment in infrastructure.

We model the ID requests as multi-class Poisson. Say therelBrelasses,
with classi characterized by\;, u;, b;), where); is the Poisson rate of arrivals,

1/p; is the mean holding time of individual demands, &né the bandwidth
demand on individual requests. We leave open for the present the matter of the
distributions of the holding periods. An example of bandwidths demanded by
differing classes i$64 kps, 128 kps, 256 kps, 384 Kps

FD requests are indexed byand thej-th request is characterized by the
four-tuple(R;, S;, T}, b;), whereR; is the time that the request is madg,is
the start time of the bandwidth demarid,is its termination time, andl; is the
bandwidth requested.

We do not propose any specific statistical model for FD, in part because it
is in a nascent stage, data is unavailable and also, as with any new service,
the demand rates are unstable and unpredictable. It is our expectation that the
holding timesI’; — S; with be typically longer than in ID, and that the requested
bandwidths; will also be larger.
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Indeed if the holding time$; — S; last for several hours or days, then there
are important consequences on the modelling of ID. It becomes necessary to
incorporate time dependencies, particularly in the arrival rate$Ve propose
to consider time inhomogeneous Poisson processesjj.es, \;(t) for i =
1,...,n.

This paper focuses on a strategy to satisfy the ID customers. A provisioning
methodology is developed to allocate the least amount of bandwidth needed to
accommodate the QoS requirements of the ID customers, so that more capacity
can be made available to serve the forward demand.

This provisioning scheme is developed first for a single customer class. Each
member of this class requests a unit amount of resources and has identical
demand characteristics that only depend on the current price. An asymptotic
provisioning solution is obtained for the steady-state single class case. Next,
the demand function for this single class case is allowed to depend on time. In
this time-varying single class case an approximation technique is employed to
develop a provisioning solution. The results for the single class steady-state
and time-varying cases are then generalized to a multiple class case. This
generalization allows for multiple customer classes each requesting distinct
amounts of bandwidth and each having unique demand characteristics. Armed
with the single class results and techniques of reversible systems, a multi-class
provisioning solution is realized.

1. Canonical Design Problems for the Erlang Loss Model

Let us first investigate the single customer class case {). It is assumed
that all the customers in this class request a unit amount of bandibidth1)
and are governed by the same demand function that only depends on the price.
Let customers arrive according to a Poisson process, whegeals the mean
arrival rate. Moreover, let thénolding timefor the unit bandwidth resource be
random and assume that different customers have i.i.d. holding times, where
1/ equals the mean holding time. The unit amount of bandwidth requested
by a customer is called @hanneland we defind. to equals the total number
of channels. The resulting queueing model for this single class case is the
classical Erlang loss model. Assuming a homogeneous Poisson arrival rate, it
is typically denoted as ah/ /G /L/L queue. When all channels are in use, the
system is calletblockedand we define to equal the probability that the system
is blocked.

If there is an infinite amount of bandwidth available, then every customer
requesting a channel receives it. The total number of chameglestedy
customers at a given time is called thféered loadand we defing to equal its
mean. Itis a function of the aggregate demand for bandwidth. \TH€&' /oo
(infinite server queue) is viewed as the offered load process for bandwidth
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requests. The steady state distribution for MéG /oo queue lengthQ is
Poisson where

e ¢

Pr(Qoc =) = 1)

foralli =0,1,...andg = \/p. SinceE[Qo] = Var[Qu] = ¢, it follows that
q equals the mean @), and,/q equals the standard deviation@f..

Inthe context of this single class, unit bandwidth, classical Erlang loss model,
we can discuss three canonical design problems:

2!

1 The Quality of Service (QoS) Problem.
2 The Provisioning Problem.

3 The Pricing Problem.

In the next section, we generalize these basic problems to the case of a multi-
class bandwidth model.

The first of three problems is thgiality of service (QoS) problentt can be
described graphically by the following block diagram. Formally the problem

d e=7?

QoS
L Problem

Figure 1.  The quality of service (QoS) problem.

statement is as follows: Given the number of chandetsxd the mean of the
offered loadg, what is the resulting probability of blockingexperienced by
the single customer class?

An exact solution to the QoS problem was obtained by Erlang [2]. The
solution is the classicd&rlang blocking formula It states that if is the total
number of channels available ands the mean of the offered load then the
blocking probability equals:

)

.
orks @
=0 "

We can rewrite this formula as a conditional probability of the offered load
process and obtain:

‘»Q
‘»Q

Br(q) =

L
!

h

5L(Q):P( OO:L’QOOSL):P(L_1<QOOSL‘QOOSL)- (3)
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What is probabilistically clear (using the theory of time reversible Markov
chains, see Kelly [7]) bythysicallyparadoxical is that the infinite server queue
which experiences no congestion gives complete insight into the analysis of
systems with blocking. Also this conditional form is quite useful in the heavy
traffic analysis needed for the provisioning problem.

Now we relax the constraints on the arrival process and let customers arrive
according to a non-homogeneous Poisson process where dt tift¢ equals
the mean rate of the non-homogenous Poisson process. The offered load process
{Qx(t) |t > 0 } for this time varying case is th&/; /G /oo queue. At time,
the M, /G /oo queue has a Poisson distribution or

P(Quelt) = i) = A @
whenever) (0) has a Poisson distribution, which includgsg, (0) = 0. More-
over, assuming that the holding times are exponential, the mean of the time
varying offered load process is then:

Sa(0) = A0 — - (o). ©

To model more general service distributions, we can numerically solve a similar
set of ordinary differential equations for a phase type service. The total number
of equations used for such distributions equals the number of service phases.

Now that the distribution of the time varying offered load process is known,
how does one find a solution to the QoS problem? The modified offered load
(MOL) approximation is employed to give an approximate solution to the time-
varying QoS problem. Giveh channels, ifQ,(¢) equals the number of chan-
nels in use at time, then

Pr(Qr(t) = L) = BL(q(t)) = P(Qoo(t) = L|Quo(t) < L). (6)

whereq(t) solves the above differential equation. This result can be found
in Jagerman [5]. Error bounds for this approximation are given by Massey
and Whitt [11]. The MOL approximation is at its best during periods of small
blocking probabilities, which in practice is when such approximations are most
useful.

The second canonical problem is thmvisioning problemwhich is the
main thrust of this paper. Formally the problem statement is as follows: Given
a mean offered loag, what is the smallest numbér of channels needed to
guarantee a QoS probability of blocking less than

We use the work on server staffing in Jennings, Mandelbaum, Massey and
Whitt [3] as motivation to develop a provisioning solution.Zlfis the amount
of provisioned bandwidth that satisfies the single class QoS constraint].then
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Figure 2.  The provisioning problem.

should at least be as big as the mean of the offered load. It is also reasonable
to add extra capacity to handle random demand fluctuations bigger than the
mean. In this spirit we set the number of channels equal to the mean plus some
multiple x of the standard deviation of the offered load or

L(g,z) = [q+x/q], @)

wherezx is selected in [3] by computing the inverse of a Gaussian tail distribu-
tion. The inverse of the Gaussian tail distribution is useful for approximating
solutions to provisioning problems for delay systems but not for loss systems.
The more appropriate function to use in this paper is suggested by the work of
Jagerman [6].
Recall that the probability of blocking equals the following conditional
probability:
P(Qoo = L)
Brq) = m (8)
where(Q, has a Poisson distribution. If we scale up the mean of the offered
load, then we have the asymptotic result

qll)lglo \/a : BL(q,m) (Q) = i((i))

= “P(N(0,1) = 2| N(0,1) < z)" (9)

whereN (0, 1) has a normal distribution or formally

1 2 1 z
=—e /2 and @ :—/
oz) = e @)="7=] ¢
This result can be found in Jagerman [6].
Now we define an important special function. kiebe the inverse function
to ¢/®, where for allz > 0

—*/244., (10)

(11)

The properties of the function are of utmost importance to our analysis of the
provisioning problem. We now explore several of the key properties for
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Theorem 1 If ¢ is the inverse of/®, then it is strictly decreasing with

Y(y)+y>0 (12)

for all y > 0. Moreover, is the unique solution to the nonlinear differential

equation
—1

YO = Ty
with the initial conditiom)(,/2/7 ) = 0.

Proof: We first show that) solves the above differential equation. Starting
with the identity

(13)

oa) e 1 (14)
P(x) [T e t/2dt [ e tP/2tat gp’
we obtain -
/ et/ 2wt gy — 1 (15)
0 Yy
Now we differentiate both sides hyand get
oo —1
W) [ e = = (16)
0 )
which gives us
LoD ey [T ewr . &
= W) (L) [ e
0
Yy
and the differential equation faf follows from this identity.
Using the above identity (15) and integration by parts, we have
1
_ 1 + rl/](y) f(;X) e_t2/2+w(y)dt 18
- Jo2 et /2 w)dt (18)
00 4o —t2/244(y)
_ I te dt (19)

[ =P dt

which shows thay + ¢ (y) > 0 and completes the proog.



They function is the inverse of the hazard function. Becauseytlienc-
tion solves a simple ordinary differential equation, we can easily compute it
numerically. Moreovery is a generic function so we can precompute a lookup
table of values fot)(x) that can be used for all provisioning problems. We use
a second order Runge-Kutta method to compt(te), based on the following
approximation:

Ax
(z+ Az/2) (v + Az/2+ ¥(x) - Ax/(22(x + ¥(2))))
(20)
Given they function, we can construct asymptotic channel provisioning
solution If € = 81.(¢) and we sell = [ ¢ + z,/q |, then

P(r+Az) = P(r)-

€~ \}a . g((i)) implies z ~ ¥ (e,/q). (21)
Making this approximation an equality gives us
L=Tq+v(eva)val (22)

If we definel(z) = z + ¢(e+/z )y/z. We can show from the properties for
that
(0)=0 and ¢(L/(1—¢€))> L. (23)

By the continuity of¢, there must exist some < ¢ < L/(1 — €) where
¢(q) = L. Given the properties af, we have

L=q+4(ev/g)va>q(l —e). (24)

Define the carried load to be the mean number of customers that are admitted for
service. IfL is the actual number of channels that gives a steady state offered
load of ¢ and a QoS o, then the carried load ig(1 — €). This is consistent

with the above inequality.

We now turn our focus to the time varying single class provisioning problem.
An approximate provisioning solution can be realized via the modified offered
load approximation combined with thefunction. The solution takes the same
form as above. The number of provisioned channels equals the mean of the
offered load plus some multiple of the standard deviation of the offered load.
The approximate time-varying provisioning solution is:

L(t) ~ a(t) + ¥ (/a®)) /) (25)

where for the case of exponentially distributed service timeslves the dif-
ferential equation
dq

0t = \t) — - a(t). (26)
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The provisioned number of channelgt), is a continuous function of time due

to the continuity of) andg(t). SinceL(t) is set according to offered loadt),

which is an expected value, it is possible that the actual number of users in the
system exceeds the desired number of channels as specified by equation 25.
This property is a unique by-product of the dynamic provisioning of network
capacity. We define this scenario aglwost stateand apply the following
non-preemptive serviadiscipline when the system reaches a ghost state:

= The excess channels process their last customers until their jobs are com-
plete.

= During this period no new jobs are admitted.

Figure 3 is the state transition diagram for the single class customer case.
It defines three distinct type of states: nonblocking states, blocking state and
ghost states. If the system is in a nonblocking state then a transition to and from
that state due to an arrival or service is allowed. While in a blocking state, any
transition from this state due to an arrival is not permitted. In the ghost states a
transition due to an arrival into a ghost state is forbidden. Only a transition due
to a service from a ghost state is allowed.

0 1 Li-1 Ly L+l L o
non-blocking Eblocking E ghost
states i state i states
bx=B~b  bx=B, bx=B

max

Figure 3.  State transition diagram for the single class case.

Before concluding this section, should point out that there is a third design
problem, called th@ricing problem Viewing price as a mechanism to control
the offered load, this reduces to finding an offered lgatiat yields a QoS
blocking probabilitye given a total ofL. channels. This problem was addressed
by Keon and Anandalingam [8] and for the case of a constant arrival rate,
Courcoubetis and Reiman [1]. Also, a “Gaussian-distribution approximation
based” approach is proposed by Lanning, Massey, Rider and Wang [9] for
single-service models, and a “hazard function approximation” based approach
is introduced for multi-service models in Hampshire, Massey and Wang [4].
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2. Generalization to the Multi-Class Bandwidth Model

The single class results can be generalized to a multiple customer class set-
ting. Suppose that we have a heterogeneous set of customers, where each class
requests differing amounts of bandwidth. Det... A\, 1/u1,...,1/puy,, and
b1,...,b, be respectively, the call arrival rate functions, mean call holding
times, and the amount of bandwidth requested fontdiferent classes of cus-
tomers indexed by. If there is an unlimited amount of available bandwidth,
then all the classes behave like a collectiomehdependent infinite server

queues. We can then define an offered load model, W@&)ét) denotes the
random number of customers simultaneously ugingnits of bandwidth. It

follows that each{ QfQ (t) [t>0 } is anM /G /oo queueing process where

eacthQ (t) has a Poisson distribution whene\@&)(o) does. If we letR
equal the offered load of the total requested bandwidth, then

R=> 6Q% (27)
=1
where in steady stalé[foo)] = Var| ffo)] = ¢; = \;/1i. Consequently,

n n
E[R] = big; and Var[R] =) b (28)
=1 =1

Let B be the total amount of available bandwidth. We can then formulate
a carried load model Wher@g) (t) equals the random number of customers
simultaneously using; units of bandwidth at timg given an admission control
policy that rejects any arriving customer requesting more bandwidth than is
available.

We now reconsider the QoS problem for multiple customer classes. The

(by, -, by

(T
: : QoS (Ep - E) =72
B Problem

Figure 4. The multi-class bandwidth quality of service (QoS) problem.

blocking for clasg customers equals the probability of the event ¥t , bng)
is greater thaB — b;.
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Since theQ((Q (t)'s are mutually independent Poisson random variables, we
know that the probability given above is some genericfungﬁ@n: R — Rof
theg;(t)'s whereg;(t) = E[QY ()] Letq = (g1, ..., gn) andb = (br, ..., by).

In general, ifQ,...,Q, are a collection of mutually independent Poisson
random variables with; = E[Q;], if we defineﬁg) to be

i=1

59(% b) = Pr (B —b < ijQg))

= Pr{B-b<> bQY)<B
j=1
<

B

Zn: b;QY) < B)
j=1

Pr(B —bi <35, b,Q% < B)

Pr (z;;l b;,QY) < B) ’

andq = (q1,...,¢,). Then this equals the steady state blocking probability

for classi. This result follows from time reversibility as discussed in Kelly [7].
We now reconsider the capacity provisioning problem with time-varying

arrival rates for multiple services. In this case, the blocking at tifiee class

j customers equals the probability of the event thdt | bng) (t) is greater
thanB(t) — b;. The modified offered load approximation for this probability
is defined to be

Pr (B —bi < fw%’u)) ~ Pr (B b YU

j=1 j=1

iwé@%w <B ) .
j=1

(29)
Onejustification for this approximation is that it gives the exact answer when the
arrival rates are constant and the system is in steady state. Thus an approximate
QoS solutionis :

69 (a(t),b) = Pr (B b b0 < B
j=1

S 0,09 (1) < B)

j=1
Pr(B — b < X1 5,Q¥(t) < B)

Pr (271 0,09 (1) < B)

We now reconsider the provisioning problem for multiple customer classes.
If g; is the mean offered load for customers requestingnits of bandwidth,
then the multiple class provisioning problem is to answer the question: What
is the smallest amounf? of bandwidth needed to guarantee a probability of
blocking less than; for each class?
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(by, ..., by)

1

Provisioning B="7
(€, - 1 Ep) Problem

Figure 5.  The multi-class bandwidth provisioning problem.

Recall thatR is the offered load of the total requested bandwidth3 i the
amount of provisioned bandwidth that satisfies the multi-class QoS constraints,
then B should be at least as big as the mean of the offered ihatt is also
reasonable to add extra capacity to handle random demand fluctuations bigger
than the mean. In this spirit we set the amount of bandwidth equal to the mean
plus some multipler of the standard deviation of the offered load. As in the
single class case, we scale up the offered load of each class. In this limiting
regime an asymptotic provisioning solution is found. If

z)=n-> bigi+x|n-Y bl (30)
i=1 \ =1

wheren is a scaling factor for the offered loads, then we have the limiting result:
(ab) = (z)

lim \fﬂ = . ,

700 B(n / " b2, d(x)
where¢ and® are defined the same as for the single class case. This limiting
result can be found in the papers of Reiman [13] as well as Mitra and Morrison
[12]. Sincew is a decreasing functlon then the constraﬁﬁf (q,b) < ¢

asymptotically (using the value gﬁﬁB q, b) asn — oo to approxmate
its value aty) = 1) implies

b 6(x) )
’ € x b e
N o) = 7 >¢(/¢ZQ> (32)

Our provisioned amount of bandwidth must satisfy the QoS conditions for
all of the classes. Thus if satisfies all the QoS conditions, then

€4 " 2
T > 1%%an (bi'q ;@%) (33)

(31)
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which is equivalent to

G o
xzw(@lgnbi \ ;bi%)' (34)

Making this inequality an equality, we have the provisioning solution:

B = Z biq; + (lrgliign: . $ Z bfqi) J Z b2q;. (35)
== i=1 i=1

i=1

This result leads to an asymptotic rule of thumb which states:
Asymptotic Rule of Thumb: The dominant QoS classes are the ones with the
smallest; /b; ratio.
Satisfying their requirements provides more than enough bandwidth for all the
other classes.
These results can be generalized to the time varying arrival case. The ap-
proximate time-varying provisioning solution at times

B(t) = bigi(t) + v (f@;gﬂéZ : \J > b2qi(t) ) \l > bgi(t)  (36)
i=1 - i=1 i=1

where if we assume that the service time for each class is exponentially dis-
tributed, then each;(t) solves the differential equation

L) = M(0) — i i), @7)

These results are due to the modified offered load approximation. The band-
width function B(t) is a continuous function of time. Service discipline as-
sumptions need to be made as in the single class case. During times of capacity
reduction customers hold their resources until their job is complete. Also during
this period no new customers of that class are admitted for service. Figure 6 is
the state space transition diagram for a system with two classes of customers.
It is assumed that class 2 customers request more bandwijdthan the first
class. This figure defines four distinct type of states: nonblocking states, class
2 blocking states, class 1 and 2 blocking states and ghost states. If the system is
in a nonblocking state then a transition to and from a state due to an arrival or a
service is allowed for both classes. While in a class 2 blocking state, transitions
from these states due to an arrival of a class 2 customer is not permitted. In the
class 1 and 2 blocking states transitions from these states due to an arrival of a
class 1 or class 2 customer is not permitted. In the ghost states a transition due
to an arrival of either class into the ghost state is forbidden. Only a transition
due to a service is allowed in ghost states.
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Figure 6.  State transition diagram for the two-class case.

Before we conclude this section, we state for completeness the general mul-
tiple class bandwidth version of the pricing problem. Given the desired QoS
probability of blockinge; for each class requesting; units of bandwidth and
given the amount of bandwidtB, what is the largest offered loaglthat yields
a QoS blocking probability less thaf? An approximate algorithm for solving
this problem is explored in the paper Hampshire, Massey and Wang [4].

3. Numerical Results

Numerical results are given for the provisioning problem with two customer
classes. These two classes may have time varying arrival functions. The provi-
sioning problem is solved to determine the amount of bandwit{if) needed
at any given time. Next we use this prescribed bandwidth attiméormulate
the “exact” Markovian loss model. Then at each time step numerically inte-
grate the forward equations for this model and compute the transient blocking



Provisioning for Bandwidth Sharing and Exchange 15

probabilities. Once the blocking probabilities are computed we compare them
to their respective QoS bounds.

The numerical example consists of two heterogenous customer classes. Let
customers of the first class arrival according to a Poisson process with mean
rate\; (¢) = 30, requesting 20 units of bandwidth and desiring no more then 4
percent blocking . Customers of second class arrive according to a nonhomoge-
neous Poisson process with mean vate¢) = 40+ 10 sin(27¢/80), requesting
5 units of bandwidth and desiring no more than 1 percent blocking.

For the numerical results presented, the planning horizon is 80 time units.
It is assumed that the customer holding times are mutually independent and
exponentially distributed with the mean of a single time unit.

The bandwidth functionB(¢), is a continuous function of time. In practice,

a service provider changes the size of the network only at discrete times. The
intervals on which the size of the network is held constant are called provisioning
periods. The amount of bandwidth allocated over a provisioning period is the
maximum of B(t) over that provisioning interval. The provisioning periods
can be made to be finer and finer. Thus as the provisioning period becomes
infinitesimally small, the continuous provisioning solution is obtained.

The two period provisioning scenario is considered first. The top graph in
Figure 7, is a plot of the transient blocking probabilities computed by numeri-
cally integrating the forward equations for the Markovian loss model with ghost
states. The lower graph is a plot of the provisioning solufkgt) which we use
to compute the discrete approximation/sft) for exactly two provisioning pe-
riods. Notice at time 40 the apparent discontinuity in the blocking probabilities
is reality a discontinuity of theerivativeof the blocking probabilities, which
are actually continuous functions of time. This phenomena is due to the genera-
tion of ghost states. At time 40, the amount of provisioned resources decreases
instantaneously. This activates the non-preemptive service assumptions, thus
blocking arrivals of new requests. Now compare the transient blocking prob-
abilities to the QoS targets. It is seen that the transient blocking probabilities
are in reasonable range of the targets. As the number of provisioning periods is
increased, the transient blocking probabilities are closer to the QoS targets. In
Figure 8, we consider the case of eight provisioning periods. The derivative dis-
continuities in the blocking probabilities are caused by the generation of ghost
states. The reasoning follows from above. Finally, turning to the continuously
provisioned system, the transient blocking probabilities approach the desired
QoS requirement for each class.

4. Summary

We have presented three canonical problems that arise from the Erlang loss
model. These problems have a natural interpretation for a network service
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Figure 7. Two period provisioning example.

provider. The QoS problem is a classical problem that Erlang addressed in
1917. The pricing problem is the topic of another paper [4]. Much of this paper
was dedicated to solving the provisioning problem. An asymptotic provisioning
solution for a system offering multiple services was presented. A numerical
example was also given in which there were two types of services and non-
stationary demand for the services. It was observed that this provisioning
methodology performs as desired. The provisioning solution is a result of an
asymptotic scaling of the offered load. Therefore, we expect more desirable
results as the demand for services increases. In the numerical example we
assumed that the service time distributions were exponential. We should note
that our provisioning solution is also valid for phase-type service distributions,
where the mean offered load satisfies a systemdifferential equations where

n is the number of phases.

The provisioning solution is a planning tool for a network service provider
that is offering multiple differentiated services that each have unique QoS guar-
antees. The bandwidth functiof3(¢), can be used as schedule for capac-
ity management. Our methodology for computing the provisioned bandwidth
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Figure 8.  Eight period provisioning example.

schedule is lightweight and computationally inexpensive. This is because the
function ¢ can be simply computed from a lookup table. Therefore we can
compute the provisioning schedule in realtime given forecasted demand for
the services. The ability to compute the provisioning solution in realtime is a
valuable property of our methodology.
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