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1. Introduction

According to Koole and Mandelbaum [5], almost 60 to
70 percent of the total costs for operating a call center in-
volve wage and benefit expenses for personnel. It follows
that determining the optimal amount of call center agents
is of great interest to call center managers. This personnel
or staffing problem has been studied by others (see [5] for
extensive references). Previous work often assumes that an
unlimited number of telephone lines are available to han-
dle calls. This paper addresses both the staffing of agents
and the provisioning of telephone lines by introducing a rev-
enue and penalty structure. Our goal is to develop an ap-
proximate algorithm for designing a profit optimal staffing
and provisioning schedule. Our method for determining the
number of agents and telephone lines arises from variational
optimization methods.

First, we model the call center as a multiserver queue with
additional waiting spaces and abandonment. This queueing
system is a special case of a natural class of queueing net-
work models for call centers called Markovian service net-
works. They were identified and analyzed in Mandelbaum,
Massey and Reiman [6]. Markovian service networks capture
many important call center features such as time varying
arrival rates, multiserver queues, service abandonments, as
well as network routing due to service completions or service
abandonments. Inspired by growing a business to match a
corresponding growth in customer demand (as first used in
Halfin and Whitt [3]), we can scale these stochastic queue-
ing models so that they converge to a deterministic “fluid”
model.

Now we add an economic structure to our queueing model
for the call center. We assume that there is a reward for
every successful service completion, a penalty for every aban-
doned call, and a cost for the number of agents and telephone
lines used. We can then express the total profit for the call
center as an integral functional of the time evolution for the
number of customers in the system over a fixed time interval.
We call this our profit functional.
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In general, the fluid models for these Markovian service
networks are dynamical systems whose evolution is governed
by a set of non-linear, ordinary differential equations. The
dimension of these equations correspond to the number of
service nodes in the network. The queueing model for our
call center is one-dimensional. The corresponding fluid model
is governed by an ordinary differential equation. We then
use variational calculus methods from the theory of optimal
control to derive a optimal staffing and provisioning sched-
ule from our analysis of the fluid approximation of the profit
functional.

2. Markovian Service Network and
Fluid Models

Our stochastic call center model, the queueing system
process Q@ = {Q(¢t) |t > 0}, is defined by letting A(¢) = non-
homogeneous Poisson arrival rate at time ¢, u = exponential
service rate, § = exponential “music”’-abandonment rate,
~ = exponential “busy signal”’-abandonment rate, K(t) =
number of additional telephone lines at time ¢, and L(t) =
number of call center agents at time .

Now we construct the uniformly accelerated version of the
model (see [6]) with scale factor n > 0. In the context
of call centers, we can motivate this asymptotic scaling by
considering the expansion of a business in response grow-
ing customer demand. The “size” of this call center busi-
ness is given by the number of call center agents L(¢) and
telephone lines K (t) + L(¢). Similarly the “size” of the ag-
gregate customer demand is given by the arrival rate A(t).
The service rate and abandonment rates u, 3 and v corre-
spond to personal decisions made by individual customers
that are independent of the total size of customer demand
or the total size of the call center. This follows from the
fact that the typical customer is unaware of both of these
dimensions for the call center. Based on these assumptions,
it it reasonable to scale the parameters A\, K and L upwards
by n, but not to scale u, 3 or v. Now consider the limit of
this process Q7 = {Q"(t) |t >0} as n — co. By appeal-
ing to the strong law of large numbers, we can construct a
deterministic approximation for the mean behavior of the
unscaled system.

From the general theory for Markovian service networks
(see [6]), it follows that whenever we have lim, .. Q@7(0)/n =

Q(0), there is a deterministic process Q¥ = { QU@ [t>0 }



such that

lim lQ" =QY as. (2.1)
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where this almost sure convergence is uniform over compact
intervals of time. Moreover, this deterministic process Q(O)
is a dynamical system that is governed by the differential
equation

d )
Al

~x0 -5+ ((QU0 - 20) " - (V0 - K0 - L))

-5
1 (QUW - KW - L) —n- (V0 ALO)

and referred to as a fluid model.

We now have a deterministic dynamical system that ap-
proximates our random queueing process. By adding on a
pricing and cost structure, we can develop an approximate
optimal profit design analysis by applying the variational
calculus tools of optimal control theory to the fluid model.

3. Variational Analysis of the Fluid

Profit Model

We add a pricing and cost structure to our call center
queueing model with r = service completion reward per cus-
tomer, s = music abandonment penalty per customer, 7 =
busy signal abandonment penalty per customer, ¢(L) = total
staffing cost rate for L agents, d(K + L) = total provisioning
cost rate for K + L telephone lines. For the rest of the paper,
we assume that K and L are non-negative functions that are
not necessarily integer-valued. Using the fluid model Q(© to
approximate the mean queueing behavior for the stochastic
call center model, our goal now is to find Q(®, K and L and
an additional multiplier z = {z(¢) |0 <t < T } so that we
can maximize the integral
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In the language of classical mechanics, our generalized profit
integral A is the action and its integrand £ is the Lagrangian.
The latter has the units of energy for a physical system and
plays the role of a profit rate for our call center model. The
fluid approximation Q@ for the total number of customers
in the call center plays the classical mechanical role of the
position variable. Using the Hamiltonian reformulation of
the Lagrangian, the multiplier x is the generalized momen-
tum variable. Whenever Q(O) and x are extremal solutions

for the action, then the Euler-Lagrange equations apply and
give us
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(3.2)

If x corresponds to momentum, then & corresponds to the
classical mechanical term of force. For call centers, (3.2) tells
us that & is the marginal profit rate per customer density. It
follows that x is the marginal profit per customer density. It
measures of the impact on the total profit of an additional
customer joining the system.

Assume that ¢ and d are both non-negative, increasing,
concave functions, our optimization problem reduces to the
analysis of three simpler, “competing” Lagrangians L1, Lo
and L£3. We say that one of these Lagrangians is dominant
at time ¢, if it is the largest of the three.

THEOREM 3.1. Given Q) and z, construct K* and L*
as follows:

win QO if Lo is dominant,
K(t) = { 0 otherwise. (3.3)
and
cin QO if Ly is dominant,
L*(t) = { 0 otherwise. (3.4)

It holds that if Q) x, K* and L* mazimize [, Ldt, then
having L1, L2 or L3 being dominant corresponds respectively
to Q) and z solving the Fuler-Lagrange equations

QO =2x—7Q" and i=(z—1)7, (3.5)

OO =2-5Q® and i=(z—s)B-dQ). (3.6)

or

QY =x—pQ and i=(@+ru—c Q) -dQ).
(3.7)

One immediate consequence of this theorem is that K*(t)
and L*(t) are complementary variables, i.e. K*(t)-L*(t) = 0.

To test our optimal schedule, we simulate the Markov-
ian model of the call center. The profits obtained from this
Markovian model by simulation are then compared to the
optimal fluid profits. To provide evidence that this sched-
ule is asymptotically optimal, we construct alternate sched-
ules that are random perturbations of the optimal schedule.
They are created randomly and are applied to the simulated
Markovian model.

Figure 1 shows the staffing schedule and cost for this nu-
merical case. Note that the staffing schedule goes through
the three Lagrangian modes. Both sets of graphs show that
the average profit for the simulated queue with the optimal
profit schedule is greater than the average profits from the
perturbed schedules.
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Figure 1: Non-Profit example with \(¢) = 100.0+30.0-
sin 0.757t, p = 1.0, 8 = 2.0, v = 10.0, r = 0.0, s = 38.9543,

T =

4.
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39.0023, (L) =39.9-L and d(K + L) = 0.1- (K + L).
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