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Abstract

Numerous examples of real time services arise in the service industry that can be
modeled as loss systems. These include agent staffing for call centers, provisioning
bandwidth for private line services, making rooms available for hotel reservations and
congestion pricing for parking spaces. Given that arriving customers make their deci-
sion to join the system based on the current service price, the manager may use price
as a mechanism to control the utilization of the system. A major objective for the
manager is then to find a pricing policy that maximizes total revenue while meeting
the quality of service targets desired by the customers.

For systems with growing demand and service capacity, we provide a dynamic
pricing algorithm. A key feature of our solution is congestion pricing. We use demand
forecasts to anticipate future service congestion and set the present price accordingly.
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1 Introduction

Many finite capacity service systems can be formulated as a loss system, where arriving
customers are rejected at times when the system capacity is full. This is in contrast to a
delay system where the customers are put into a queue or a waiting line until service capacity
becomes available. Examples of loss systems include private line communication services, call
centers, hotels, and parking garages. A given system may also evolve from a delay system
to a loss system as the nature of its offered services changes. Consider, for example, the
underlying packet-switched data network of the Internet. It fits the description of a delay
system when the network only offers the so-called “best-effort” service, where admission is
open to all consumers and excess traffic (packets) is queued in the buffer. Nevertheless,
for many recent real time applications, such as voice over IP (VoIP) and internet video, the
network has to offer “guaranteed service” where consumers are rejected if there is not enough
capacity to handle their demands. For such situations, a loss system formulation is more
appropriate.

As is the case with many service facilities, customer arrivals at a loss system depend on
the price of the service. Moreover, pricing serves the following three functions: a device for
revenue collection, an instrument for admission control, and a control mechanism to attain
a given quality of service. Note that admission control is the only way that the service
manager can reduce the system load. Moreover, the quality of service level is a measure of
satisfaction for the customer.

For loss systems, the primary measure of the quality of service is the blocking rate, or the
probability that an arriving customer is denied service. For some cases, quality of service
is a contractual agreement between the customer and the service provider (e.g. leased lines
and call centers). For other services, the quality of service is a target which the provider
aspires to meet (e.g. parking garages and hotels). Even in the latter case, missing a quality of
service target results in customer dissatisfaction and hurts the provider’s business in the long
run. Therefore, a sensible pricing policy should not only strive to maximize the provider’s
immediate revenue, but also to satisfy the quality of service target, which is a property that
we require for the pricing policy developed in the paper.

Early work on combining queueing and pricing, with applications to information systems,
concentrate on the delay model (see Dewan and Mendelson [3], Mendelson [18], Mendelson
and Whang [19], Stidham [21], and Westland [23]). This is also the case for Internet pricing
(see Bailey and Knight [1] and Mackie-Mason and Varian [15]). Pricing of a loss system that
offers guaranteed services has been proposed in Wang, Peha and Sirbu [22] and studied in
great detail in Courcoubetis, Dimakis and Reiman [2]; Lanning, Massey, Rider and Wang
[14]; and Maglaras and Zeevi [16].

State dependent closed loop pricing policies have been addressed by Fan-Orzechowski and
Feinberg [8]. This results in a randomized pricing strategy. Similar pricing work with periodic
arrival rates has been addressed by Yoon and Lewis [24] but without constraints on the
blocking probabilities. Developing a revenue-maximizing pricing policy that accommodates
time-varying demands and satisfies the required QoS constraint remains an open problem,
even for the classical blocking model. The main difficulty is integrating the blocking rate
calculation into the price optimization, especially in cases when customer arrivals are non-
stationary. Our paper addresses this issue and is based on work found in Hampshire [9].
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We consider a growing service where the demand and capacity are large. In this setting
we develop a dynamic pricing solution that maximizes revenue while meeting the blocking
rate target. The policy explicitly incorporates the non-stationarity of demand and is forward-
looking by setting the price in anticipation of future congestion. We use a demand forecast
to anticipate this future service congestion and set the present price accordingly.

There are several key contributions of our work:

• Our dynamic pricing policy is established using deterministic optimal control theory.
Insight from Lagrangian mechanics is used to solve this problem. The notion of an
opportunity cost per customer, which captures the monetary impact of admitting an
additional customer on future congestion emerges as an essential component of our
policy.

• We approximate the uniform blocking rate constraint for the time varying loss system
by a simple threshold constraint for the mean of an infinite server queue with time-
varying arrival rates. We can estimate this threshold by using a generic special function
first introduced in Hampshire, Massey, Mitra and Wang [10]. It is the inverse of the
hazard rate function for a normal distribution. Several new properties of this function
are developed and used to further our analysis.

• We compare our algorithm with a static policy and a myopic policy. The static policy
is the fixed price which maximizes revenue while meeting the blocking rate constraint.
The myopic policy is a dynamic policy that uses only the present state of the system
to determine the current price while meeting the blocking rate constraint. Our policy
generates more revenue than both the static and myopic policies over a wide range of
parameter values.

• Finally, we derive sensitivity results that provide managerial insights for quantifying
the revenue tradeoff between increasing the capacity and decreasing the quality of
service.

In the section that follows we introduce a carried load model of the service and formulate
the pricing problem. The tools of calculus of variations and Lagrangian mechanics are em-
ployed in Section 3 to produce an approximate solution to the carried load pricing problem.
We first reduce this problem to a constrained offered load problem that approximates the
same blocking probabilities of the former. The latter problem can be solved using our La-
grangian dynamics. Our algorithm is then a numerical solution of this Lagrangian problem.
In Section 4 the case of bounded elastic demand is treated with a numerical example. In
Section 5, we can price our quality of service metric by suggesting the percentage change
in the blocking probability target that is needed to achieve a given percentage change in
revenue. In a similar manner, we can also price the percentage change of capacity and show
the tradeoff between the two. Finally in Section 6, we summarize our conclusions. This is
followed by an appendix in Section 7 on the properties of a special function that is relevant
to the analysis in this paper.
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2 The Carried Load Model and Pricing Problem

A traffic and offered load model are introduced for customer arrivals and resource demand
processes.They form the foundation for the analytical tools needed to address our ultimate
loss model, the carried load (blocking) system.

2.1 Traffic and Offered Load Models

We assume that customers arrive to the service system according to a non-homogeneous
Poisson process, {A(t) | t ≥ 0 } with rate function {λ(t) | t ≥ 0 } where for all non-negative
integers n, we have

P {A(t) = n} =
1

n!

(∫ t

0

λ(s) ds

)n

· exp

(
−

∫ t

0

λ(s) ds

)
. (2.1)

The service system informs the arriving customers of their price of admission. We assume
that each arriving customer assigns a utility value to the service. This value is private
and hence unknown to the service manager. From the manager’s perspective each arriving
customer has random, identically distributed utility values that are mutually independent.
If the current service price is below an arriving customer’s utility value, then the customer
accepts that price and joins the system. If the current service price is above an arriving
customer’s utility value, then that customer rejects the price and does not join the system.

This procedure produces a thinned Poisson process with rate function λ(t, π(t)) where
π(t) is the service admission price at time t. We assume that the non-homogeneous Poisson
process with this rate function is our traffic model for customers requesting this service.
We define a dynamic policy to be one that is deterministic but a function of our forecasted
customer-demand rate function λ(·, ·) over a finite time horizon given by the interval [0, T ].
We can now formally state our open-loop traffic pricing objective.

Optimization Problem 2.1 (Traffic Pricing) Find a dynamic pricing policy, denoted by
{ π(t) | 0 ≤ t ≤ T }, such that we

maximize

∫ T

0

π(t) · λ(t, π(t)) dt. (2.2)

This is a calculus of variation problem (see Ewing [7]) that reduces to a static optimization
problem at each time t or

π(t) · λ(t, π(t)) = max
z≥0

z · λ(t, z). (2.3)

We can restrict z to being positive since z · λ(t, z) is always a negative number when z is
negative. When λ is smooth or differentiable, then π must solve the equation

λ(t, π(t)) + π(t) · ∂λ
∂π

(t, π(t)) = 0 or
π(t)

λ(t, π(t))
· ∂λ
∂π

(t, π(t)) = −1. (2.4)

The last statement says that the pricing policy solution to the traffic pricing problem has
the property that the percentage increase in price is matched by the percentage decrease in
demand. The traffic price corresponds to the optimal price assuming infinite capacity.
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The offered load model represents the demand for the resources of a system with infinite
capacity, and corresponds to the infinite server queue, {Q∞(t) | t ≥ 0 }. Given our traffic
model, the number of resources requested at any given time has a Poisson distribution with
mean q(t) ≡ E [Q∞(t)],

P {Q∞(t) = i} =
e−q(t)q(t)i

i!
, (2.5)

whenever Q∞(0) has a Poisson distribution (which includes Q∞(0) = 0). If the customer
service times are exponential with rate µ then,

d

dt
q(t) = λ(t, π(t))− µ · q(t). (2.6)

The work of Eick, Massey and Whitt [5] explores the dynamic properties of infinite server
queues with non-homogenous Poisson input. The solution of the offered load model provides
a basis for the analysis of the loss system in the next section.

2.2 The Carried Load Service Model and the Pricing Problem

The carried load model has finite capacity and arriving customers are denied service if all
system resources are occupied. Throughout this paper, the term loss system is used inter-
changeably with carried load model. Hampshire, Massey, Mitra and Wang [10] explore the
connection between the offered load model and loss system in detail. We present a brief
summary of this relationship.

Let {QC(t)|t ≥ 0} be the number of customers in a Mt/Mt/C/C queue. The fundamental
connection between our offered load and carried load models is given by the modified offered
load approximation due to Jagerman [11]

P (QC(t) = C) ≈ βC (q(t)) = P (Q∞(t) = C|Q∞(t) ≤ C) , (2.7)

where the formula given by βC(·) is the Erlang blocking formula (see Erlang [6]). Observe
that this approximation is exact when the Poisson arrival rate is constant and both systems
are in steady state equilibrium. Estimates on the error of this approximation can be found in
Massey and Whitt [17]. The use of this modified offered load approximation to the blocking
rate improves upon the work of Lanning, Massey, Rider and Wang [14]. They use the tail
distribution of the time varying infinite server queue to approximate the blocking rate of a
loss system.

Due to the Poisson distribution of the one-dimensional distributions for the Mt/G/∞
queue length process, it is natural to use the square root staffing representation found in
Jennings, Mandelbaum, Massey and Whitt [12] of the service capacity

C = p q + x
√
q q, (2.8)

where q in this section only refers to some generic offered load value and “d·e” is the ceiling
function. Now the problem of determining the staffing level is transformed into finding an
unknown continuous variable x. Since the mean of a Poisson random variable equals its
variance, the term

√
q can be thought of as the standard deviation of the offered load.
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Inspired by growing a business to match a corresponding growth in customer demand, we
scale the arrival rate by η > 0, and hence the offered load q. Using the square root staffing
rule and this scaling, Jagerman [11] shows that

lim
η→∞

√
η · βp ηq+x

√
ηq q (ηq) =

1
√
q
· φ(x)

Φ(x)
(2.9)

where

φ(x) =
1√
2π
e−x2/2 and Φ(x) =

∫ x

−∞
φ(y)dy. (2.10)

In other words, φ and Φ are respectively, the density and cumulative distribution function
for some standard Gaussian random variable (mean 0, variance 1). This asymptotic result
says that if a manager wants to keep the blocking probability of the system below ε, this can
be approximated by the relation

1
√
q
· φ(x)

Φ(x)
≤ ε. (2.11)

Now we define ψ(·) to be the functional inverse of the ratio φ(·)/Φ(·), or

φ(ψ(y))

Φ(ψ(y))
= y (2.12)

for all y > 0. Since φ(−x) = φ(x) and Φ(−x) = 1− Φ(x), then the ratio φ(x)/Φ(x) can be
viewed as a hazard function. This function ψ(·) was first introduced in Hampshire, Massey,
Mitra and Wang [10]. New properties of ψ(·) are critical for the analysis to follow and are
presented in the Appendix of this paper. One essential property of ψ(·) is that it is a strictly
decreasing function, so we have

1
√
q
· φ(x)

Φ(x)
≤ ε ⇒ x ≥ ψ (ε

√
q) . (2.13)

This suggests that in terms of provisioning for a QoS level of ε, the smallest effective value
for x is x = ψ

(
ε
√
q
)
. Given C and ε, we can show that there exists a unique positive value

θ such that
C = `ε(θ) where `ε(x) ≡ x+ ψ

(
ε
√
x
)√

x, (2.14)

where we refer to this constant θ as the critical offered load. Asymptotically, θ is the largest
offered load that has a blocking probability less than ε for C channels. The critical offered
load θ exists as a consequence of Corollary 7.2 of the Appendix which proves that `ε(x) is
an increasing function of x.

Now we introduce the notion of carried load revenue. The problem faced by the service
manager is to set a pricing policy that maximizes carried load revenue while satisfying the
blocking probability constraints for the carried load system. The carried load pricing problem
reduces to a search among all deterministic pricing policies { π(t) | 0 ≤ t ≤ T } that yield a
customer arrival rate function {λ(t, π(t)) | 0 ≤ t ≤ T } that solves the following optimization
problem.
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Optimization Problem 2.2 (Carried Load Pricing) Find a dynamic pricing policy π
such that we

maximize

∫ T

0

π(t) · λ(t, π(t)) · P {QC(t) < C} dt subject to max
0≤t≤T

P {QC(t) = C} ≤ ε.

(2.15)

In what follows, we present the constrained offered load pricing algorithm that solves the
carried load pricing problem under the blocking rate approximation.

3 Analyzing the Pricing Problem

In this section we transform the optimization problem of carried load dynamic pricing opti-
mization into an optimal control problem for the offered load. The key step that facilitates
this transformation is approximating the blocking probability for a loss system by a non-
linear function of the offered load. Once the constrained optimal control problem is derived,
we can use the tools of calculus of variations to derive necessary conditions of optimality.

3.1 Reduction to a Constrained Optimal Control Problem

Our set of feasible pricing policies are restricted to those where,

max
0≤t≤T

P {QC(t) = C} ≤ ε. (3.1)

All such policies satisfy the following set of inequalities

(1−ε)
∫ T

0

π(t) ·λ(t, π(t)) dt ≤
∫ T

0

π(t) ·λ(t, π(t)) ·P {QC(t) < C} dt ≤
∫ T

0

π(t) ·λ(t, π(t)) dt,

(3.2)
which gives us the inequality∣∣∣∣∫ T

0

π(t) · λ(t, π(t)) dt−
∫ T

0

π(t) · λ(t, π(t)) · P {QC(t) < C} dt
∣∣∣∣ /∫ T

0

π(t) · λ(t, π(t)) dt ≤ ε

(3.3)
Thus we see that for all pricing policies where the probability of blocking is always less than
ε, the relative error between the corresponding carried and offered load revenues is also less
than ε.

This means that for small ε, we can approximate the pricing problem by maximizing the
traffic revenue given by a pricing policy that satisfies the quality of service constraint or

maximize

∫ T

0

π(t) · λ(t, π(t)) dt subject to max
0≤t≤T

P {QC(t) = C} ≤ ε. (3.4)

Combining the modified offered load approximation with (2.9), the hazard rate limit
result of Jagerman [11], we replace our quality of service constraint (3.1) with the offered
load constraint of

max
0≤t≤T

q(t) ≤ θ, where C = `ε(θ). (3.5)

This reduces our analysis of the pricing problem to the following approximation.
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Optimization Problem 3.1 (Constrained Offered Load Pricing) Find a dynamic pric-
ing policy such that we

maximize

∫ T

0

π(t) · λ(t, π(t)) dt subject to max
0≤t≤T

q(t) ≤ θ, (3.6)

where
d

dt
q(t) = λ(t, π(t))− µ · q(t). (3.7)

3.2 Lagrangian Dynamics

Next we reformulate the constrained optimal control problem 3.1 as a classical physics prob-
lem of Lagrangian mechanics with the necessary auxiliary variables.

Optimization Problem 3.2 (Constrained Offered Load Pricing) Find a dynamic pric-
ing policy, with auxiliary functions of time p(·), q(·), x(·) and y(·) such that

maximize

∫ T

0

L
(
t, p(t), q(t),

•
q(t), π(t), x(t), y(t)

)
dt, (3.8)

where
•
q(t) = d

dt
q(t) and

L
(
t, p(t), q(t),

•
q(t), π(t), x(t), y(t)

)
= (3.9)

π(t) · λ(t, π(t)) + p(t) ·
(
•
q(t)− λ(t, π(t)) + µ · q(t)

)
+ x(t) ·

(
C − `ε(q(t))− y(t)2

)
.

Our revenue rate function L, as given by (3.9), plays the role of the Lagrangian in physics,
but we seek a greatest action principle here rather than a least one. The optimized integral for
the total revenue as given by (3.8) is called the action for the system in classical mechanics.
Using the Euler-Lagrange equations, the optimal p(·), q(·), π(·), x(·) and y(·) must satisfy
the following set of Euler-Lagrange equations:

∂L
∂p

= 0 =⇒ •
q(t) = λ(t, π(t))− µ · q(t), (3.10)

d

dt

∂L
∂
•
q

=
∂L
∂q

=⇒ •
p(t) = µ · p(t)− x(t) · `′ε(q(t)), (3.11)

∂L
∂π

= 0 =⇒ λ(t, π(t)) +
∂λ

∂π
(t, π(t)) = 0, (3.12)

∂L
∂x

= 0 =⇒ C − `ε(q(t)) = y(t)2, (3.13)

∂L
∂y

= 0 =⇒ x(t) · y(t) = 0. (3.14)

These are the conditions satisfied by any extremal solution. For a local maximum, we
must also have

(π(t)− p(t)) · λ (t, π(t)) = max
−∞<z<∞

(z − p(t)) · λ(t, z) (3.15)
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and x(t) ≥ 0, since
−x(t) · y(t)2 = max

−∞<z<∞
−x(t) · z2 = 0. (3.16)

These last two results are applications of the Pontryagin principle (see Pontryagin, Boltyan-
shii, Gamkredlidze and Mishchenko [20]).

The offered load q(t) and the price per customer π(t) are the state variables. Their
dynamics are constrained by the Lagrange multiplier functions p(t) and x(t). The multiplier
p(t) is called the dual variable to q(t). In classical mechanics q(t) corresponds to the position
variable and p(t) corresponds to the momentum variable where

p(t) =
∂L
∂
•
q

(
t, p(t), q(t),

•
q(t), π(t), x(t), y(t)

)
(3.17)

and the terminal condition p(T ) = 0 holds. Moreover, p(t) creates an equality constraint
when we optimize the total revenue integral and the corresponding Euler-Lagrange equation
(3.11) can be rewritten as

•
p(t) =

∂L
∂q

(
t, p(t), q(t),

•
q(t), π(t), x(t), y(t)

)
. (3.18)

Thus when optimality is attained, p(t) has the economic interpretation of being the oppor-
tunity cost per customer. This means that if at time t we introduce a new customer to the
queueing system, then the resulting optimal profit derived is, up to first order, the original
optimal value minus p(t).

In a similar manner, x(t) creates an inequality constraint when we optimize the total
revenue integral. The Euler-Lagrange equation for x(t) is equivalent to the desired inequality

C − `ε(q(t)) ≥ 0. (3.19)

Moreover, x(t) in this context has the economic interpretation of being the marginal profit
rate per channel since we have by sensitivity analysis (see Section 5) that

dL
dC

(
t, p(t), q(t),

•
q(t), π(t), x(t), y(t)

)
=
∂L
∂C

(
t, p(t), q(t),

•
q(t), π(t), x(t), y(t)

)
= x(t).

(3.20)
Since y(t) defines the inequality constraint, it is called the slack variable. The optimal

solutions for both x(t) and y(t) make them complementary variables since the Euler-Lagrange
equation for y(t) yields x(t) · y(t) = 0. Economically, this means that the marginal optimal
revenue per channel is zero whenever there is no congestion or y(t) > 0.

Moreover, `′ε(θ) is the marginal critical channel unit per customer given the critical offered
load of θ since it only makes a non-zero contribution during congestion when x(t) > 0, which
is equivalent to y(t) = 0 or q(t) = θ.

Finally, applying the Pontryagin principle in more detail yields the following optimization
relations for π(t):

(π(t)− p(t)) · λ(t, π(t)) =

{
maxz≥0 (z − p(t)) · λ(t, z) if y(t) > 0,
maxz:λ(t,z)≤µ·θ (z − p(t)) · λ(t, z) if y(t) = 0.

(3.21)

9



The last condition follows from the fact that y(t) = 0 if and only if q(t) is at the constraint
boundary θ where its time derivative cannot be positive. Observe that if our demand function
is a strictly decreasing function of the price for service, then it follows from (3.21) that
p(t) < π(t) always holds.

The following theorem provides a probabilistic formulation for p(t) and q(t) and gives
us additional insight into their dynamical behavior. If we think of q(t) as looking backward
into the past as it moves forward in time, then p(t) looks forward into the future as it moves
backward in time. The opportunity cost per customer p(t) is anticipating future levels of
congestion in the system. This is precisely the mechanism that is needed for congestion
pricing.

Theorem 3.3 Let Σ be a random service time that is exponentially distributed with mean
1/µ. We can rewrite the optimal solutions for p and q as

q(t) = q(0)·P {Σ > t}+E

[∫ t

t−Σ

λ(s, π(s)) ds

]
and p(t) = `′ε(θ)·E

[∫ t+Σ

t

x(s) ds

]
, (3.22)

where we use the convention that λ(s, ·) = 0 for all s < 0 and x(s) = 0 for all s > T .
Moreover, p has the following three properties:

1. We have p(t) ≥ 0 for all t ∈ [0, T ].

2. If p(t) = 0 for some t ∈ [0, T ], then p(s) = 0 for all s ∈ [t, T ].

3. If p(t) = 0 for some t ∈ [0, T ), then x(s) = 0 for all s ∈ [t, T ].

Proof: By (3.10), the differential equation for q at time t is

d

dt
q(t) = λ(t, π(t))− µ · q(t). (3.23)

Solving this inhomogeneous linear equation at time t, when we initialize at time 0 gives us

q(t) = q(0) · eµ·t +

∫ t

0

λ(s, π(s)) · e−µ·(t−s) ds

= q(0) · eµ·t + E

[∫ t

0

λ(s, π(s)) · 1{Σ>t−s} ds

]
= q(0) · eµ·t + E

[∫ t

t−Σ

λ(s, π(s)) ds

]
.

Similarly by (3.11), the differential equation for p at time t is

d

dt
p(t) = µ · p(t)− `′ε(θ) · x(t). (3.24)

Solving this inhomogeneous linear equation at time T , when we initialize at time t, gives us

p(T ) = p(t) · eµ·(T−t) − `′ε(θ) ·
∫ T

t

x(s) · eµ·(T−s) ds. (3.25)
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The terminal condition of p(T ) = 0 and the convention for x gives us

p(t) = `′ε(θ) ·
∫ t

0

x(s) · e−µ·(s−t) ds

= `′ε(θ) · E
[∫ T

t

x(s) · 1{Σ>s−t} ds

]
= `′ε(θ) · E

[∫ t+Σ

t

x(s) ds

]
.

The remaining properties for p(t) follow from the fact that `′ε(θ) > 1 − ε (see Corollary 7.2
of the Appendix) and x(·) is a non-negative function of time.

3.3 Derivation of the Algorithm

Now we derive the constrained offered load pricing algorithm. Given the differential equations
(3.10) and (3.11) for q and p, we can numerically integrate them as an autonomous system
if we can compute π and x from a given pair of p and q.

First, we assume that λ(t, ·) is a smooth, decreasing, invertible function of the price.
Moreover, we assume that for all t, the equation

λ(t, z) + (z − p(t)) · ∂λ
∂π

(t, z) = 0 (3.26)

has a unique solution in z that we call π̂(t), where we also have

(π̂(t)− p(t)) · λ(t, π̂(t)) = max
z≥0

(z − p(t)) · λ(t, z). (3.27)

Whenever y(t) > 0, it follows that the optimal price π(t) = π̂(t). We cannot use this
solution for π(t) whenever y(t) = 0 and µ · θ < λ(t, π̂(t)), since we now have q(t) = θ. Since
•
q (t) ≤ 0, we must have

λ(t, π(t)) ≤ µ · θ < λ (t, π̂(t)) or π̂(t) < λ(t, ·)−1(µ · θ) ≤ π(t). (3.28)

As a function of z, we are assuming that (z − p(t)) · λ(t, z) has a unique critical point at
π̂(t). Hence, this function must be a strictly decreasing function on the interval [π̂(t),∞).
This means that

max
z:λ(t,z)≤µ·θ

(z−p(t))·λ(t, z) = max
z:λ(t,z)=µ·θ

(z−p(t))·λ(t, z) =
(
λ(t, ·)−1(µ · θ)− p(t)

)
·µ·θ (3.29)

and so π(t) = λ(t, ·)−1(µ · θ).
To obtain the non-zero expression for x(t), first observe that the sensitivity relation (5.2)

holds for any initial time t where 0 ≤ t < T , we also have

d

dC
(π(t) · λ(t, π(t))) = x(t). (3.30)
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Now observe that whenever we have x(t) > 0, it follows that y(t) = 0. This means that our
system is congested or π(t) = λ(t, ·)−1(µ · θ) = λ(t, ·)−1 (µ · `−1

ε (C)). From this formula, we
then obtain

x(t) =
d

dC

{
λ(t, ·)−1(µ · θ) · µ · θ

}
=

d

dC

{
λ(t, ·)−1(µ · `−1

ε (C)) · µ · `−1
ε (C)

}
=

{
d

dC
λ(t, ·)−1(µ · `−1

ε (C))

}
· µ · `−1

ε (C) +

{
λ(t, ·)−1(µ · `−1

ε (C)) · µ · d

dC
`−1
ε (C)

}
=

{
d

dC
λ(t, ·)−1(µ · `−1

ε (C))

}
· µ · θ +

{
π(t) · µ · d

dC
`−1
ε (C)

}
=

[
µ · θ

λ′(t, ·) ◦ λ(t, ·)−1(µ · `−1
ε (C))

+ π(t)

]
· µ · d

dC
`−1
ε (C)

=

[
µ · θ

λ′(t, π(t))
+ π(t)

]
· µ

`′ε ◦ `−1
ε (C)

=

[
µ · θ

λ′(t, π(t))
+ π(t)

]
· µ

`′ε(θ)
,

where λ′(t, ·) = ∂λ
∂π

(t, ·). Figure 1 presents a flowchart that summarizes our dynamic pricing
algorithm.

4 Numerical Example

In this section, we demonstrate the application of our heuristic pricing approach through a
numerical case study. The first step is to define the demand function. We assume that the
user arrival rate has the following bounded elastic demand function

λ(t, π) =
γ(t)

(α+ βπ)σ
α > 0, β > 0 and σ > 1, (4.1)

where π is some generic price value and

γ(t) = z · [W − (2t/T − 1)2], z > 0, W > 0. (4.2)

This demand model differs from the standard constant elasticity demand (CED) function,
λ(t, π) = βπ−σ, in two aspects. First, the CED function suffers from an anomaly that the
revenue rate πλ(t, π) = βπ1−σ can grow without bound as the price π approaches 0. With
(4.1), we avoid this difficulty since

max
π≥0

λ(t, π) = λ(t, 0) = γ(t) · α−σ.

Note that our demand is unimodal for a fixed price π and it reaches its unique peak in the
middle of the planning horizon (t = T/2).

12
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Figure 1: The Constrained Offered Load Pricing Algorithm

From (4.1), we have for each t

π(t)λ′(t, π(t))

λ(t, π(t))
= −σ · βπ(t)

α+ βπ(t)
. (4.3)

So at any given price, a larger value of σ implies a larger percentage change of demand
(4λ/λ) with respect to the percentage change of price (4π/π). Since the ratio on the right
hand side of (4.3) is a number between 0 and 1, so the price elasticity of demand for the
percentage change in demand is bounded above in absolute value by σ. Also, in the limit
as the price approaches infinity, the elasticity of demand actually becomes σ. With this
demand function, the optimal traffic price, i.e., the price that maximizes the revenue in the
absence of a capacity constraint, becomes

π̂0 =
α

β · (σ − 1)
, (4.4)

which is constant despite demand variation.
Whenever q(t) < θ, then the optimal price π(t) equals π̂(t) and

π̂(t) = π̂0 +
p(t)

1− 1/σ
, (4.5)
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where the corresponding arrival rate is

λ(t, π̂(t)) = (1− 1/σ)σ · λ(t, p(t)). (4.6)

The opportunity cost per customer p(t) can then be viewed as being proportional to a
“future congestion tax” that raises the price π̂(t) above the optimal traffic price to keep the
constrained offered load from exceeding the critical offered load θ. Our approach is forward-
looking: it anticipates that users admitted during non-congested periods have a positive
probability to contribute to future congestion.

Furthermore when q(t) < θ, we have x(t) = 0. The dynamics of p(t) simply follow the

equation
•
p = µ · p, and so

p(t) = p(0) · eµt. (4.7)

Now let t1 be the first time s where q(s) = θ. The first step of our algorithm is to jointly
find t1 and p(0).

Step 1 Solve for p(0) and t1, where,

p(0) =
e−µt1

β
·
((

1− 1

σ

)
· δ(t1)− α

)
(4.8)

and

θ = q(0) · e−µt1 +

(
1− 1

σ

)σ

·
∫ t1

0

λ (p(0) · eµs, s) · e−µ·(t1−s)ds (4.9)

where

δ(t) =

(
γ(t)

µ · θ

)1/σ

.

The first equation (4.8) is equivalent to λ(t1, π̂) = µ · θ and we rewrite this as(
1− 1

σ

)σ

· λ(t1, p(0) · eµt1) = µ · θ. (4.10)

The second equation follows from having q(t1) = θ.
The second step of our algorithm is to find the last time that our constrained offered load

equals θ and call it t2.

Step 2 Solve for t2, where

γ(t2) = µ · θ ·
(

α

1− 1/σ

)σ

. (4.11)

Due to the unimodal structure of the demand there is at most one congestion period. It
follows that p(t2) = 0, which implies that λ(t2, π̂0) = µ · θ. The third step is to compute the
opportunity cost per customer.

Step 3 Solve
•
p = µ · p− `′ε(θ) · x backwards in time with p(t2) = 0 and setting

x(t) =


0 when t < t1,
(δ(t) · (1− 1/σ)− α) · µ/(β · `′ε(θ)) when t1 ≤ t < t2,
0 when t2 ≤ t ≤ T.

(4.12)
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The fourth and final step is to compute the constrained offered load.

Step 4 Solve
•
q = λ(π)− µ · q forwards in time given q(0) and

π̂(t) =


π̂0 + p(t)/(1− 1/σ) when t < t1,
(δ(t)− α) /β when t1 ≤ t < t2,
π̂0 when t2 ≤ t ≤ T.

(4.13)

4.1 Static Pricing Policy

We can compare our dynamic pricing policy to a static pricing policy. Let π̄ be the fixed
price which maximizes the total revenue subject to the uniform blocking constraint. Using
the constrained offered load formulation, the optimization problem becomes

Optimization Problem 4.1 (Constrained Offered Load Static Pricing) Find a price
π̄ such that we

maximize π̄ ·
∫ T

0

λ(t, π̄) dt subject to max
0≤t≤T

q(t) ≤ θ, (4.14)

where
d

dt
q(t) = λ(t, π̄)− µ · q(t). (4.15)

The solution to this optimization problem yields an optimal static price equal to traffic
price π̄ = π̂0 whenever λ (t̄, π̂0) ≤ µ · θ, otherwise the optimal static price solves the equation
λ(t̄, π̄) = µ · θ, where t̄ is the time of the peak offered load under the traffic price π̂0. The
static price is set to insure that the maximum of the offered load stays below the critical
offered load θ.

4.2 Myopic Pricing Policy

We also can compare our dynamic pricing policy to a myopic pricing policy. This policy is
purely reactive and does not anticipate any future congestion. Under the myopic policy, the
traffic price is charged until the critical offered load is reached. When the QoS constraint
becomes tight, then the price is raised to maintain the constraint. This occurs when the
constrained offered load reaches its critical value θ. The myopic pricing policy is defined by

π∗(t) =


π̂0 when t < t∗1,
(δ(t)− α) /β when t∗1 ≤ t < t∗2,
π̂0 when t∗2 ≤ t ≤ T.

(4.16)

where t∗1 and t∗2 are the times of the start and end of congestion respectively.
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Figure 2: Dynamic, Myopic, and Static Price

4.3 The Base Case

For our numerical base case we set the time horizon T = 100, capacity C = 50 and the
target blocking rate ε = 0.01 or 1%. The critical offered load for this case is θ = 37.98. This
means that,

`ε(q(t)) = q(t) + ψ(ε
√
q(t))

√
q(t) ≤ `ε(θ) = C = 50, if and only if q(t) ≤ θ. (4.17)

We assume that the average customer service time 1/µ equals 30 time units. Finally, for the
demand parameters, we let

α = β = 0.05, σ = 2.0, z = 1.5 and W = 1.

Figure 2 plots the optimal pricing policies for the dynamic, myopic, and static cases. Each
of these policies induce a corresponding arrival rate shown in the left-hand graph of Figure
3. Assuming the same fixed service rate, arrival rates are used to compute the constrained
offered load via the ordinary differential equation (2.6). Under each pricing policy, the
constrained offered load is displayed in the right-hand graph of Figure 3. In all cases the
time of the peak demand precedes the time of the peak offered load. This is a general feature
of a time varying queueing system.

The difference between the dynamic price and the traffic price is called the future con-
gestion tax. It captures the amount an arriving customer pays in excess of the traffic price
due to the blocking constraint.

Under the dynamic pricing policy, the arrival rate reaches its peak at time t = 15.
Starting from q(0) = 0, the constrained offered load q(t) grows until it reaches the critical
offered load θ = 37.98 at time t1 = 35.95 (see the right hand graph of Figure 3). Once
the offered load reaches the critical value, the price is set so that demand is constant and
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Figure 3: (Left) Arrival Rate and (Right) Constrained Offered Load

equals µ · θ. The offered load remains at the critical offered load until λ(t, π̂(t)) < µ · θ
and the constrained offered load starts to fall off the boundary of the critical offered load
value θ. When the QoS constraint becomes non-binding and there is no congestion, then the
opportunity cost per customer equals zero and the price equals the traffic price.

Under the static pricing policy, the price π̄ = 18.33 is initially larger than the dynamic
price. This leads to an arrival rate that is initially smaller than under the dynamic pricing
policy. Hence, the offered load under the static price grows more slowly than under the
dynamic pricing policy as seen in the right-hand graph of Figure 3. The offered load under
the static pricing policy reaches the critical threshold later (t̄ = 72.9827) as shown in Figure
3.

The price under the myopic policy is initially less than under the dynamic pricing policy.
The low initial price leads to a large initial arrival rate. This induces excessive demand
causing the myopic constrained offered load to rise quickly. The critical threshold is reached
sooner (t∗1 = 3.6768) than under the optimal dynamic pricing policy (t1 = 35.95). Our
dynamic policy efficiently smooths the demand during the pre-congestion period relative to
the myopic policy.

We now return to the original loss system of Optimization Problem 2.2 and compare
the revenue generated under each of the pricing policies. The total revenue under each
pricing policy is computed for the original loss system with C channels. The transient
state probability distribution is computed using the Kolmogorov forward equations. The
resulting revenues under the dynamic, static and myopic policies are: 2147.7, 1955.3, and
2035 respectively. The percent revenue gains under the dynamic policy relative to the static
and myopic are 8.95 and 5.35 percent respectively.

In the next subsection we study the sensitivity of the percent revenue gain under the
dynamic policy relative to the static and myopic policies as a function of the average service
time and the price elasticity.

4.4 Sensitivity Analysis

We compare the percent revenue gain under the dynamic pricing policy relative to the static
and myopic policies as a function of the average service time in the left-hand graph of Figure
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Figure 4: (Left) Percentage Gain in Revenue using Dynamic Pricing as a Function of Average
Service Time, (Right) Congestion Period as a Function of Average Service Time

4. In the right-hand graph of Figure 4 the beginning and end times of the congestion period
are plotted as a function of the average service time.

As the average service time becomes smaller the percent revenue gain of using the dynamic
policy relative to static policy increases. During the pre-congestion period, the static price
is larger than the dynamic price, so the static policy unduly depresses the arrival rate. If
the average service time is small, then the system throughput is larger under the dynamic
pricing policy which leads to more revenue.

The onset of congestion under the myopic policy occurs earlier than under the dynamic
policy. We observe that as the average service times increase, the percent revenue gain
under the dynamic pricing policy increases. This is due to the fact that the opportunity
cost of admitting an additional customer is greater when the average service time is larger.
Similarly, when the average service time is small, then the opportunity cost of admitting an
additional customer is small. The myopic policy does not consider this opportunity cost, so
when the opportunity cost is high, the dynamic policy yields a larger percentage revenue
gain. The congestion period becomes smaller as the average service time increases. Thus the
time interval on which dynamic and myopic price are equal decreases as the average service
time increases.

In the left-hand graph of Figure 5, we compare the percent revenue gain under the
dynamic pricing policy relative to the static and myopic policies as a function of price
elasticity. In the right-hand graph of Figure 5 the beginning and end times of the congestion
period under the dynamic and myopic policies are plotted as a function of price elasticity. As
the customers become more price sensitive the percentage revenue gain of the dynamic policy
over both the static and myopic policies increases. The percentage revenue gain relative to
the static policy grows faster, as a function of the elasticity, than its revenue gain relative to
the myopic policy. In the left-hand graph of Figure 5 we observe that as the price elasticity
σ grows, the congestion periods become longer, starting earlier and ending later.
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5 Sensitivity Results and Revenue Tradeoffs

The optimal constrained offered load revenue can be written as

R(T ) ≡
∫ T

0

L
(
t, p(t), q(t),

•
q (t), π(t), x(t), y(t)

)
dt =

∫ T

0

π(t) · λ(t, π(t)) dt. (5.1)

Now we quantify the sensitivity of the optimal revenue to various parameters of the carried
load system.

Theorem 5.1 The optimal marginal revenues per channel and due to productivity gains are
given respectively by the formulas

dR

dC
(T ) =

∫ T

0

x(t) dt and
dR

dµ
(T ) =

∫ T

0

p(t) · q(t) dt. (5.2)

Moreover, the optimal marginal revenue per quality of service level ε is given by

dR

dε
(T ) = −∂

∂ε
`ε(θ) ·

dR

dC
(T ). (5.3)

where in terms of C = `ε(θ) we have

−∂
∂ε
`ε(θ) =

θ

ε · (C − θ · (1− ε))
. (5.4)

Proof: The envelope theorem (see Dixit [4]) leads to

dR

dC
(T ) =

∫ T

0

∂

∂C
L

(
t, p(t), q(t),

•
q (t), π(t), x(t), y(t)

)
dt =

∫ T

0

x(t) dt, (5.5)

dR

dε
(T ) =

∫ T

0

∂

∂ε
L

(
t, p(t), q(t),

•
q (t), π(t), x(t), y(t)

)
dt = −∂

∂ε
`ε(θ) ·

∫ T

0

x(t) dt, (5.6)

and

dR

dµ
(T ) =

∫ T

0

∂

∂µ
L

(
t, p(t), q(t),

•
q (t), π(t), x(t), y(t)

)
dt =

∫ T

0

p(t) · q(t) dt. (5.7)

Recalling that

C = `ε(θ) = θ + ψ
(
ε
√
θ
)√

θ,

we then have

−∂
∂ε
`ε(θ) = −∂

∂ε

[
θ + ψ

(
ε
√
θ
)√

θ
]

= −ψ′
(
ε
√
θ
)
· θ

=
θ

ε
√
θ ·

(
ε
√
θ + ψ

(
ε
√
θ
))

=
θ

ε ·
(
εθ + ψ

(
ε
√
θ
)
·
√
θ
)

=
θ

ε · (C − (1− ε) · θ)
, (5.8)
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Figure 5: (Left) Percentage Gain in Revenue using Dynamic Pricing as a Function of Price
Elasticity, (Right) Congestion Period as a Function of Price Elasticity

which completes the proof.

Since dR/dC equals the change in revenue due to an increase in the capacity and dR/dε
equals the change in revenue due to an incremental increase in the QoS target ε, then
Theorem 5.1 quantifies the tradeoff between these two quantities. Now we rewrite (5.3) in
terms of percentage changes which captures the elasticity of these parameters

dR

R

/
dε

ε
=

θ

C · (C − θ · (1− ε))
· dR
R

/
dC

C
. (5.9)

This suggests a tradeoff for making a percentage change in the optimal revenue between the
percentage change in ε and the percentage change in capacity C

∆ε

ε
≈ Γ (C, ε) · ∆C

C
where Γ (C, ε) ≡ C · (C − θ · (1− ε))

θ
(5.10)

is called the QoS-Capacity efficiency ratio.
This result implies that the percentage increase in optimal revenue obtained by a per-

centage increase in capacity can also be obtained by a percentage increase in the QoS level ε
that is a factor of Γ (C, ε) times the capacity percentage increase. Moreover, this factor has
the following asymptotic behavior for large C

Proposition 5.2 For all 0 < ε < 1, we have

lim
C→∞

Γ (C, ε) =
1

ε
− 1. (5.11)

Proof: By Corollary 7.2 of the Appendix we know that `ε(x) is an increasing function.
Therefore C →∞ implies that θ →∞. Rewriting Γ (C, ε), we have

C · (C − θ · (1− ε))

θ
=

(
θ + ψ

(
ε
√
θ
)√

θ
)
·
(
θε+ ψ

(
ε
√
θ
)√

θ
)

θ
(5.12)

=

1

ε
+
ψ

(
ε
√
θ
)

ε
√
θ

 · ε
√
θ ·

(
ε
√
θ + ψ

(
ε
√
θ
))

(5.13)
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Using Theorem 7.1, we have

lim
x→∞

ψ(x)

x
= −1 and lim

x→∞
x · (x+ ψ(x)) = 1 (5.14)

which completes the proof.

This gives us a simple rule of thumb for estimating the revenue tradeoff between increasing
the capacity and degrading the quality of service. In order to increase revenue a manager
may consider increasing the relative amount of capacity C or increasing the relative amount
of blocking ε. The QoS-Capacity efficiency ratio for the base case of the numerical example
is Γ (C, ε) = 16.32. To induce the same percentage change in revenue, the percentage change
in the blocking probability must be 16.32 times the percentage change in capacity. In the
current example, a 10% percent increase in capacity produces the same percentage gain in
revenue as a 163.2% percent increase in the probability of blocking ε. This implies that
increasing C from 50 to 55 induces the same percent increase in revenue as changing the
blocking probability ε from 1% to 2.163%.

Before making the decision to increase capacity or degrade the service quality the manager
must consider the costs of these two actions. The cost of increasing the relative capacity
can be calculated directly. While the cost of degrading the service quality may be computed
indirectly by measuring customer retention. The QoS-Capacity efficiency ratio is a simple
tool to facilitate this decision making process.

6 Summary and Conclusions

We provide a dynamic pricing heuristic for time-varying loss systems that maximizes revenue
while meeting quality of service targets over a finite time horizon. The modified offered load
(MOL) approximation and the ψ function, inverse of the normal hazard rate, are tools that
convert the uniform QoS blocking constraint into a threshold constraint for the mean of the
nonstationary infinite server queue. The resulting dynamic optimization problem is analyzed
with calculus of variations, and we derive necessary conditions for the optimal pricing policy.

The opportunity cost per customer captures the “future congestion tax” levied on the
system when admitting an additional customer. Using the constrained offered load and the
opportunity cost per customer, our solution is able to anticipate future service congestion
and set the present price accordingly.

Our dynamic pricing policy is shown numerically to produce more revenue than the static
pricing policy. The static policy selects the fixed price that maximizes revenue while meeting
the offered load constraint. As the average service time decreases and the price elasticity
increases, so does the percent revenue gain generated by our dynamic policy.

Our dynamic pricing policy is also shown numerically to produce more revenue than a
myopic pricing policy. The myopic policy does not consider future congestion. The myopic
policy considers only the constrained offered load, not the opportunity cost per customer.
As the average customer service time increases and the price elasticity increases, so does the
percent revenue gain generated by our dynamic policy.

Finally, the revenue tradeoff between increasing capacity and degrading the quality of
service is considered. Increasing capacity allows more customers to be admitted for service,
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generating more revenue. Increasing the QoS target ε increases the critical offered load θ
allowing more customers to enter into service. The QoS-Capacity efficiency ratio captures
this revenue tradeoff.
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7 Appendix: Properties of the ψ function

The ψ function is introduced in Hampshire, Massey, Mitra and Wang [10], where many of
its properties are derived. Below, we state and prove some additional properties that are
used to further the analysis in this paper.

Theorem 7.1 For all x > 0, we have

0 > ψ(x) + x− 1

x
>

−1

x3 + x
. (7.1)

Proof of Theorem 7.1: First, we show that ψ(x) + x > 0 for all x > 0 and converges to
zero as x→ +∞. Since φ′(y) = −y · φ(y), we have

ψ(x) + x = y +
φ(y)

Φ(y)
=
y · Φ(y) + φ(y)

Φ(y)
=

∫ y

−∞ Φ(z) dz

Φ(y)
> 0. (7.2)

We now have ψ(x)+x > 0 for all positive x. If we set ψ(x) = y, then x→ +∞ is equivalent
to y → −∞. We then have limx→+∞ ψ(x) + x = 0, since by L’Hopital’s rule

lim
x→∞

ψ(x) + x = lim
y→−∞

∫ y

−∞ Φ(z) dz

Φ(y)
= lim

y→−∞

Φ(y)

φ(y)
= lim

y→−∞

φ(y)

−y · φ(y)
= lim

y→−∞

1

−y
= 0. (7.3)

Now let

h(x) ≡ ψ(x) + x− 1

x
. (7.4)

We have limx→+∞ h(x) = 0 and differentiating h gives us

h′(x) =
−1

x(x+ ψ(x))
+ 1 +

1

x2
=

h(x)

x+ ψ(x)
+

1

x2
. (7.5)

If h(x) ≥ 0, then h′(x) > 0. This contradicts h converging to zero as x→ +∞, so we must
have h(x) < 0 for all x > 0.

Differentiating h a second time gives us

h′′(x) =
−h(x)

(x+ ψ(x))2

(
1 +

−1

x(x+ ψ(x))

)
+

h′(x)

x+ ψ(x)
− 2

x3
(7.6)

=
−h(x)2

(x+ ψ(x))3
+

h′(x)

x+ ψ(x)
− 2

x3
. (7.7)

If we set h′(x) = 0, then by (7.7) we must have h′′(x) < 0. Hence extreme points for h are
always local maxima.

If h′(x) ≤ 0 for some x, then h is locally decreasing. Since h is negative and convergent
to zero for large x, then h must have a local minimum point, which is a contradiction.
Therefore, h′(x) > 0 for all x > 0, and so

h(x)

x+ ψ(x)
+

1

x2
> 0. (7.8)
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This gives us

h(x) >
−1

x2
(x+ ψ(x)) =

−1

x2

(
h(x) +

1

x

)
. (7.9)

Finally, when resolve the inequality for h, we obtain

h(x) >
−1

x3 + x
, (7.10)

which completes the proof.

Corollary 7.2 The following statements are true and equivalent:

1. The function f(x) = ψ(x) + x is positive, decreasing and convex.

2. The function g(x) = x(ψ(x) + x) is positive, increasing and less than 1.

Moreover, if we let
`ε(x) ≡ x+ ψ

(
ε
√
x
)√

x, (7.11)

then `ε is an increasing function with `′ε(x) > 1− ε.

Proof: The equivalence of the statements follows from the identity

f ′(x) =
−1

g(x)
+ 1. (7.12)

Now it remains only to prove the second statement.
Differentiating g gives us

g′(x) =
g(x)

x
− x

g(x)
+ x. (7.13)

If we do it a second time, then

g′′(x) = −g(x)
x2

− 1

g(x)
+
g′(x)

x
+
x g′(x)

g(x)2
+ 1. (7.14)

If g′(x) = 0, then

g′′(x) = −g(x)
x2

− 1

g(x)
+ 1 < 0, (7.15)

since (7.1) implies that g(x) < 1. Hence all extreme points of g must be local maxima. If
g′(x) ≤ 0 for some x, then by (7.15) it follows that g must be locally decreasing after x.
However, g is positive and converges to 1 by (7.1), so g must have after x a local minimum.
This is a contradiction, so g′(x) > 0 for all x > 0. Therefore g is a strictly increasing function
and this completes the proof.
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