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Abstract

We consider a multi-server delay queue with finite additional waiting spaces and
time-varying arrival rates, where the customers waiting in the buffer may abandon.
These are features that arise naturally from the study of service systems such as call
centers. Moreover, we assume rewards for successful service completions and cost rates
for service resources. Finally, we consider service level agreements that constrain both
the fractions callers who abandon and the ones who are blocked.

Applying the theory of Lagrangian mechanics to the fluid limit of a related Marko-
vian service network model, we obtain near profit-optimal staffing and provisioning
schedules. The nature of this solution consists of three modes of operation. A key step
in deriving this solution is combining the modified offered load approximation for loss
systems with our fluid model. We use them to estimate effectively both our service level
agreement metrics and the profit for the original queueing model. Second-order profit
improvements are achieved through a modified offered load version of the conventional
square root safety rule.
Keywords: Asymptotic Analysis, Call Centers, Calculus of Variations, Delay Mod-
els, Dynamical Systems, Lagrangian, Multi-Server Queues, Optimal Control, Server
Staffing.
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1 Introduction

According to Koole and Mandelbaum [23], 60 to 70 percent of the total costs for operating
a call center involve wage and benefit expenses for personnel. It follows that determining
the optimal amount of call center agents is of great interest to call center managers. Other
features – such as facilities, equipment, maintenance, telephony access resources, and power
consumption – contribute to the call center’s bottom line as well, and thus warrant thoughtful
design and control. In this paper, we couple the decision of how to staff call center operators
dynamically with the decision of how to control another dynamic feature. This would be
buffer capacity or the number of telephones lines dedicated to callers of a given type. These
are features that affect the quality of service.

We consider a multi-server delay queue with finite additional waiting spaces and time-
varying arrival rates, where the customers waiting in the buffer may abandon. We assume the
call center manager receives payments for each successful service completion. In addition,
the manager also incurs costs both for employing operators and allocating telephone line
resources. The performance of the call center is evaluated using two service level metrics:
the fraction of callers who abandon and the fraction of callers who are blocked. Constraints,
or service level agreements (SLA), for both of the metrics are imposed. Ultimately, we seek
to develop a staffing and buffer capacity schedule that maximizes profits, while conforming
to the SLA.

Determining a dynamic staffing schedule is a generally accepted undertaking and is ex-
tensively explored in the literature; see, e.g., Bhandari et. al [4], Jennings et al. [22], Green
et al. [12] or Fieldman et al. [9]. Determining buffer capacity has been studied as well;
see Harris et al. [20], Whitaker [30] as well as Wallace [29] and [27]. Each of these last
four papers sets the buffer level to the minimum amount necessary to meet a given level of
service. However, the papers are restricted to steady state analysis in an environment with
stationary demand and non-adaptive, static buffer capacity. To the best of our knowledge,
ours is the first paper to consider dynamic buffer capacity in a call center context. This paper
is based on work found in Hampshire [17] and is an extension of work found in Hampshire
and Massey [18].

As for why one might have time-varying buffer capacity, consider a call center serving
multiple business lines, each with its own source of callers that effectively compete for service
resources. One can envision a system so backlogged that buffer space is at or near capacity.
Admitting a call of one type might inhibit one’s ability to accommodate others. Our approach
to capturing the externality caused by allocating buffer capacity for a given caller type is to
charge an internal cost; one can think of this as an opportunity cost.

Once we formulate our queueing model, we modify it slightly so that it conforms to
a large class of queueing network models identified by Mandelbaum, Massey and Reiman
[26] and referred to as Markovian service networks (MSN). This class of network models
capture many important call center features such as time varying arrival rates, multi-server
queues, service abandonments, as well as network routing due to service completions or
service abandonments. Inspired by growing a business to match a corresponding growth in
customer demand, we scale our MSN so that it converges to a deterministic “fluid” model
that is a dynamical system. Its time evolution is governed by a set of non-linear differential
equations.
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Given the managerial economic structure of our queueing model, we can express the total
profit for the call center as an integral functional of the number of customers in the system
over a fixed time interval. We call this our profit functional. Applying the cost structure to
our fluid model yields a fluid approximation of the profit functional. Since the fluid model
for our queueing system process is a dynamical system, we can use variational calculus
methods from the theory of optimal control, see Gregory and Lin [13], to derive a staffing
and provisioning schedule by analyzing the fluid approximation of the profit functional. From
this variational analysis, we show that a penalty model can be used to analyze the typical
performance metrics found in SLA for the design of call centers with only rewards.

Mathematically, our fluid model analysis augments the appropriate set of multipliers and
state variables to construct a Lagrangian. We can then invoke the Euler-Lagrange equations
to find the equations that determine a fluid optimal solution. For example, the multipliers
for the Lagrangian simultaneously have the call center interpretation of an opportunity cost
per admitted customer and the classical mechanical interpretation of generalized momentum.
Additional references to variational calculus and its applications to mechanics can be found
in books by Bryson and Ho [7] as well as Lanczos [24].

The resulting fluid optimal staffing and provisioning policy reduces the queueing dynamics
to three modes of operations that are each loss systems with the same time-varying arrival
rate. Our fluid model is then refined by the modified offered load approximation, allowing it
to effectively capture the average number of customers who abandon and the probability of
blocking. The latter is a quantity that is not typically captured by a fluid model. The profit
is increased by augmenting the fluid level staffing by an amount proportional to the square
root of the system load. The modified fluid model is shown to be a good approximation of
the mean behavior for the original finite buffer call center model.

Below, we list the main contributions of this work:

1. Making a connection between call center operations and classical mechanics that fur-
thers the analysis of our staffing and provisioning problem.

2. Developing a fluid optimal schedule through Lagrangian methods that equate the SLA
metrics to the application of penalties for lost service.

3. Identifying three primary modes of operation for our call center:

(a) Agent staffing with no buffer (agent mode),

(b) Buffer provisioning with no agents (music mode),

(c) No agents or buffer (busy signal mode).

4. Refining the fluid staffing schedule by employing offered load approximations such as
square root safety staffing and the Erlang blocking formula to satisfy the SLA metrics.

Within the steadily growing call center literature, our paper fits into the single customer
class/single operator type category. Other recent papers within this category include Armony
et al. [1], Baron and Milner [2], Garnett et al. [11], and Zeltyn and Mandelbaum [31], [32].
Each of these papers studies systems with customer abandonment. A fluid model approach

3



is used in [1] and the exponential abandonment assumption is relaxed in [32]. For more on
contact centers see Brown et al. [6] and Gans et al. [10]

A recent call center paper with multiple customer classes is by Gurvich and Whitt [14]. In
this paper, staffing with moderate cross training is set so that each customer achieves class-
specific service levels through “fixed-queue-ratio” routing. Bassamboo et al. [3] combine
multiple customer class with multiple server pools in a model with doubly stochastic arrival
processes. In this paper, static staffing levels are set that balance personnel costs with
abandonment penalties.

In Section 2, we present our call center model as a finite buffer, multiserver queue with
abandonment. In Section 3, we present the basic results for Markovian service networks and
create a Markovian service network model of our call center to reformulate the corresponding
optimization problem. We do this by developing a fluid limit for the MSN model and present
a fluid optimization problem. In Section 4, we give a Lagrangian formulation using penalty
costs that leads to our optimal fluid model analysis and policy. Additionally, we present
a refinement of the fluid model using modified offered load approximations. In Section 5,
we numerically implement our provisioning and staffing algorithms based on the analysis in
the previous section. We analyze an example with a non-linear cost structure and a time
dependent customer arrival rate. After the series of approximations, we apply our optimal
schedule to the original call center model. Finally, we summarize our results in Section 6.

2 Call Center Model

In this section we formulate a finite buffer call center model and present its corresponding
agent and telephone line optimization problem. Our stochastic call center model is con-
structed by defining a set of parameters that are related to the dynamics of the call center.
First, let λ(t) equal the arrival rate of a nonhomogeneous Poisson process at time t. The con-
stant µ is the common rate for the exponential distributions of the random service times for
all the customers which we assume to be mutually independent. The constant β is the rate
for the exponential distributions of the random abandonment times for all the customers
which we assume to be mutually independent. The non-negative integer L(t) equals the
number of call center agents at time t. We assume that the number of available telephone
lines exceeds the number of agents. Hence, we let the non-negative integer K(t) equal the
number of additional lines at time t.

Many probabilistic interpretations follow from these assumptions. The integral
∫ t

s
λ(u) du

equals the average number of arriving customers (incoming telephone calls) during the time
interval (s, t]. Moreover, 1/µ equals the average service time that customers spend listening
(and talking) to an agent. Finally, 1/β equals the average time customers are willing to wait
for an agent while they are listening to “music” before leaving the system.

We assume that both K + L ≡ {K(t) + L(t) | 0 ≤ t ≤ T }, the provisioning schedule
for the call center telephone lines, and L ≡ {L(t) | 0 ≤ t ≤ T }, the staffing schedule for
call center agents have a finite number of jumps in bounded intervals as a function of time.
We also assume that the forecasted arrival rate λ ≡ {λ(t) | t ≥ 0 } for customer demand is
non-negative, real-valued and locally integrable. We then define {QL/K(t) |t ≥ 0} to be the
number of customers in this Mt/Mt/Lt/Kt queue with abandonment (see Figure 1).
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Figure 1: Queueing Model of Call Center

Now we impose performance structure on our call center queueing model where we specify
the following two service level agreement (SLA) targets:

εa = maximum fraction of the mean number of customers who abandon,

εb = maximum fraction of the mean number of customers who are blocked.

Moreover, we add the following revenue and cost structure:

r = service completion revenue per customer,

c(L) = total staffing cost rate for L agents,

d(K + L) = total provisioning cost rate for K + L telephone lines.

Our fundamental optimization problem can now be stated:

Optimization Problem 2.1 (Blocking Scheduling) Find provisioning and staffing sched-
ules K and L such that we

maximize

∫ T

0

rµ · E
[
min(QL/K(t), L(t))

]
− c (L(t))− d ((K + L)(t)) dt (2.1)

subject to the abandonment constraint of∫ T

0

β · E
[
(QL/K(t)− L(t))+

]
dt ≤ Ea, (2.2)

and the blocking constraint of∫ T

0

λ(t) · P
{
QL/K(t) = K(t) + L(t)

}
dt ≤ Eb, (2.3)

where

Ea ≡ εa ·
(

QL/K(0) +

∫ T

0

λ(t) dt

)
and Eb ≡ εb ·

(
QL/K(0) +

∫ T

0

λ(t) dt

)
. (2.4)
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The integral of the first non-negative term in (2.1) is the expected revenue and we are
maximizing the average profit subject to expected service level constraints.

We express our near optimal scheduling algorithm in terms of a solution to a set of
competing Lagrangian equations which we now define. Given positive constants σ and τ ,
we say that the deterministic processes p = { p(t) | 0 ≤ t ≤ T } and q = { q(t) | 0 ≤ t ≤ T }
solve the following set of differential equations:

1. If `1 (p(t), q(t)) ≥ max (`2 (p(t), q(t)) , `3 (p(t), q(t))) holds, then

d

dt
p(t) = (p(t)− τ) γ and

d

dt
q(t) = λ(t)− γq(t). (2.5)

2. If `2 (p(t), q(t)) ≥ max (`1 (p(t), q(t)) , `3 (p(t), q(t))) holds, then

d

dt
p(t) = (p(t)− σ) β − d′(q(t)) and

d

dt
q(t) = λ(t)− βq(t). (2.6)

3. If `3 (p(t), q(t)) ≥ max (`1 (p(t), q(t)) , `2 (p(t), q(t))) holds, then

d

dt
p(t) = (p(t) + r) µ− (c + d)′(q(t)) and

d

dt
q(t) = λ− µq(t). (2.7)

Moreover, `1 (p(t), q(t)), `2 (p(t), q(t)) and `3 (p(t), q(t)) are defined to be

`1 (p(t), q(t)) ≡ (p(t)− τ) γ q(t)− c(0)− d(0), (2.8)

`2 (p(t), q(t)) ≡ (p(t)− σ) β q(t)− c(0)− d (q(t)) (2.9)

`3 (p(t), q(t)) ≡ (p(t) + r) µ q(t)− c (q(t))− d (q(t)) . (2.10)

Finally, p and q are uniquely determined when we are given the value of q(0) and set p(T ) = 0.
Our algorithm is then to find positive constants σ and τ such that∫

{`2(p(t),q(t))>max(`1(p(t),q(t)),`3(p(t),q(t)))}

β · q(t) · (1− b(0, q(t))) dt = Ea (2.11)

and ∫
{`1(p(t),q(t))>max(`2(p(t),q(t)),`3(p(t),q(t)))}

λ(t) dt +

∫
{`2(p(t),q(t))>max(`1(p(t),q(t)),`3(p(t),q(t)))}

λ(t) · b(0, q(t)) dt

+

∫
{`3(p(t),q(t))>max(`1(p(t),q(t)),`2(p(t),q(t)))}

λ · b(χ(t), q(t)) dt = Eb (2.12)

where b(·, ·) is defined to be

b(a, z) ≡ zdz+a
√

ze

dz + a
√

ze!

/dz+a
√

ze∑
i=0

zi

i!
, (2.13)
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χ(t) is the smallest positive number such that

rλ(t)√
q(t)

· φ(χ(t))

Φ(χ(t))
+ (c + d)

(
q(t) + χ(t)

√
q(t)

)
= min

a≥0

(
rλ(t)√
q(t)

· φ(a)

Φ(a)
+ (c + d)

(
q(t) + a

√
q(t)

))
(2.14)

with

φ(x) ≡ 1√
2π

· e−x2/2 and Φ(x) ≡
∫ x

−∞
φ(y) dy. (2.15)

Now our agent staffing schedule is L(t) = dq(t)+χ(t)
√

q(t)e when the dominant Lagrangian
is the one that generates the equation given by (2.10). The number of additional telephone
lines is given by K(t) = bq(t)c when the dominant Lagrangian is the one that generates the
equation given by (2.9).

In Section 3, we show how the blocking features of our call center model can be approx-
imated by impatient customers who experience a fast abandonment. This creates a new call
center model that belongs to the family of Markovian service networks established in Man-
delbaum, Massey and Reiman [26]. The appeal of these queueing networks is that they scale
asymptotically to deterministic dynamical systems that we call fluid models. In Section 4,
we show how a dynamic optimization of the fluid model leads to an equivalent formulation
where the SLA constraints are replaced by penalties for each customer lost to regular or fast
abandonment. Moreover, this fluid model analysis suggest optimal modes of operation for
the queueing model that correspond to the dynamics of the Erlang loss model. In turn we
apply various modified offered load approximations to transform the fluid model results into
a useful approximation of the SLA blocking probabilities. The end result is a near optimal
schedule for the original call center model that captures the SLA constraints.

3 Developing the Fluid Model

Now we modify our stochastic call center model to place it into a larger family of queueing
models that have simple scaling properties. These asymptotic results form the basis of
our optimal scheduling analysis. As illustrated in Figure 2, we use the concept of fast
abandonment to approximate the call center model with blocking by a queueing model that
has a strong law of large numbers limit theorem. Moreover, the limit of this scaled process
is a deterministic dynamical system the we call our fluid model.

3.1 Fast Abandonment

In the current model, jobs are blocked when they arrive to a system that currently has
K(t) + L(t) jobs present. In our replacement model, such jobs are not blocked. Instead, we
have an infinite buffer where those behind the K(t)-th job in the buffer (which only happens
when an additional L(t) customers are in service) abandon at rate γ. See Figure 3 for a
comparison of the two associated Markov chains. The top state-transition diagram is the
one for the original call center model. The bottom diagram describes our replacement model.
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Figure 2: Overview of Queueing Model Approximations

Any jobs that arrives to the system with K(t) + L(t) jobs already present and abandons
before any other service or regular abandonment (at rate β) event occurs, has the same
ultimate fate of being lost to the systems as a blocked customer for the blocked model. The
larger the value of γ, the fewer of these jobs stay in the buffer long enough to reach the
K(t) + L(t)-th queueing location or lower. This is due to the fact that the excess number
of customers beyond K(t) + L(t) behaves stochastically like an infinite server queue, until a
service or regular abandonment occurs, with arrival rate λ(t) and service rate γ. Hence, we
assume that γ is large relative to the other transition rates and refer to this phenomenon as
“fast abandonment”, where γ equals the exponential fast abandonment rate. This modeling
approach is effective, regardless of the size of the system.

The corresponding queueing system process Q ≡ {Q(t) | t ≥ 0 } is defined by the follow-
ing implicit equation:

Q(t) = Q(0) + Π1

(∫ t

0

λ(s) ds

)
− Π2

(∫ t

0

µ ·min (Q(s), L(s)) ds

)
−Π3

(∫ t

0

β ·
(
(Q(s)− L(s))+ − (Q(s)−K(s)− L(s))+) ds

)
−Π4

(∫ t

0

γ · (Q(s)−K(s)− L(s))+ ds

)
, (3.1)

where Πi ≡ {Πi(t) | t ≥ 0 } for i = 1, 2, 3, 4 are a collection of independent and identically
distributed, standard (rate 1) Poisson processes. The resulting queueing process is Marko-
vian. It is the special case of a Markovian service network as defined in Mandelbaum, Massey
and Reiman [26]. This paper also addresses the issues of existence and uniqueness of Markov
processes defined by implicit equations such as (3.1).

To size γ, let the time for one of the L busy servers to be free is min(Y1, . . . , YL), where
the Yi’s are a collection of i.i.d. random variables having the same distribution as Y and
L is some generic positive integer. The time for one of the K occupied to be free due to
abandonment is min(Z1, . . . , ZK), where the Zi’s are a collection of i.i.d. random variables
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Figure 3: Markov Chain Comparison for the Fast Abandonment Assumption

having the same distribution as Z, they are all independent of the Yi’s, and K is some other
generic integer. Therefore, we want to select γ such that

P (X > min(Y1, . . . , YL, Z1, . . . , ZK)) ≤ ε, (3.2)

where ε is a small positive number. Now min(Y1, . . . , YL, Z1, . . . , ZK) is exponentially dis-
tributed with rate Lµ + Kβ, so we have

P (X > min(Y1, . . . , YL, Z1, . . . , ZK)) =
Lµ + Kβ

Lµ + Kβ + γ
. (3.3)

This ratio is less than ε whenever γ > (Lµ+Kβ) ·(1/ε−1). A simple rule of thumb is then to
set γ = (Lµ+Kβ)/ε. If the probability of blocking is already low for a specific system, then
setting ε = 0.1 is more than sufficient. Our rule of thumb then becomes γ = 10.0 ·(Lµ+Kβ).

3.2 Uniform Acceleration

By appealing to the strong law of large numbers, we construct a deterministic approximation
for the sample path (and mean) behavior of any Markovian service network. Suppose that
we construct the uniformly accelerated version (see Mandelbaum, Massey and Reiman [26])
of the model (3.1) with scale factor η > 0, such that

Qη(t) = Qη(0) + Π1

(∫ t

0

η λ(s) ds

)
− Π2

(∫ t

0

µ ·min (Q(s), η · L(s)) ds

)
−Π3

(∫ t

0

β ·
(
(Qη(s)− η · L(s))+ − (Qη(s)− η ·K(s)− η · L(s))+) ds

)
−Π4

(∫ t

0

γ · (Qη(s)− η ·K(s)− η · L(s))+ ds

)
, (3.4)

and consider the pointwise limit of Qη ≡ {Qη(t) | t ≥ 0 } as η →∞.
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Figure 4: Markovian Service Network Model of Call Center with Fast Abandonment

In the context of call centers, we motivate this asymptotic scaling by considering the
expansion of a business in response to growing customer demand. The “size” of this call
center business is given by the number of call center agents L(t) and telephone lines K(t) +
L(t). Similarly the “size” of the aggregate customer demand is given by the arrival rate λ(t).
The service rate and abandonment rates µ and β correspond to personal decisions made by
individual customers and agents that are independent of the total size of customer demand
or the total size of the call center. This follows from the fact that the typical customer is
unaware of both of these dimensions for the call center. Based on these assumptions, it is
reasonable to scale the parameters λ(t), K(t) and L(t) upwards by some positive factor η,
but not to scale µ, β or γ.

From the general theory for Markovian service networks (see [26]), it follows that when-
ever we have limη→∞ Qη(0)/η = Q(0), there is a deterministic process q ≡ { q(t) | t ≥ 0 }
such that

lim
η→∞

sup
0≤t≤T

∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣ = 0 a.s. (3.5)

Moreover, this process q is a dynamical system that is governed by the differential equation

d

dt
q(t) = λ(t)− β ·

(
(q(t)− L(t))+ − (q(t)−K(t)− L(t))+)

−γ · (q(t)−K(t)− L(t))+ − µ ·min (q(t), L(t)) . (3.6)

We refer to q as the fluid model for the call center. We now study q to construct an optimal
staffing and provisioning schedule. Henceforth we refer to this procedure simply as fluid
scheduling.
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4 Fluid Scheduling with Offered Load Refinements

In this section we construct our near-optimal scheduling algorithm for the blocking models
as follows:

1. Lagrangian formulation of fluid scheduling with SLA targets.

2. Equivalence to Lagrangian formulation of fluid scheduling with penalties.

3. Concavity cost assumptions to solve fluid scheduling problem via competing Lagrangians.

4. Using modified offered load estimates to refine the fluid schedule analysis and estimate
the blocking scheduling problem.

In Section 4.1, we state the analogous scheduling problem for the fluid model with SLA
targets. We then use variational calculus to transform this problem into the analysis of an
associated Lagrangian. In Section 4.2, we show that the Lagrangian analysis of this fluid
scheduling problem is equivalent to one with penalties followed by a calibration of them to the
SLA targets. The penalties capture the cost of customer departures without receiving service
due to the blocking or abandonment. In Section 4.3, we simplify the analysis of this fluid
scheduling problem with penalties by assuming our cost functions c and d are increasing and
concave. This allows us to solve this problem in terms of what we call competing Lagrangians.
In turn this analysis suggests that the queueing system makes transitions between discrete
operational modes. For our call center blocking model, these modes corresponds to the
dynamics of an Erlang loss model. Finally, in Section 4.4, we combine this insight with
modified offered load approximation methods for the Erlang loss model. This allows us
to refine our fluid approximations and formulate a near-optimal schedule that allows the
blocking model to attain critical SLA targets such as blocking probabilities. These are
quantities that are typically beyond the reach of fluid models. The end result of our analysis
is a new technique that we call the fluid modified offered load (FMOL) approximation.

4.1 Lagrangian Formulation with SLA Targets

Now we state a fluid version of the scheduling problem where the analogues to (2.2) and
(2.3) are replaced by integral equality constraints. For this to be possible we must have
εa + εb < 1. For this section and the next two, we simplify our notation by suppressing the
time dependence, i.e. use q instead of q(t). When taking time derivatives, we denote that as
•
q instead of d

dt
q(t). The exceptions are parameters β, γ, µ and r which are always constants.

Optimization Problem 4.1 (Fluid Scheduling with SLA Targets) Find K and L so
that we

maximize

∫ T

0

rµ · (q ∧ L)− c(L)− d(K + L) dt, (4.1)

with the control constraint:

•
q = λ− β ·

(
(q − L)+ − (q −K − L)+)− γ · (q −K − L)+ − µ · (q ∧ L) (4.2)
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and integral equality constraints∫ T

0

β ·
(
(q − L)+ − (q −K − L)+) = Ea and

∫ T

0

γ · (q −K − L)+ = Eb. (4.3)

Now, our integral constraints become isoperimetric (see Bryson and Ho [7]). Including them
as equality constraints involves adding two new state variables x and y and two new Lagrange
multipliers σ and τ . This problem is equivalent to finding K and L so that we

maximize

∫ T

0

L̂(K, L, p, q,
•
q, σ, τ, x,

•
x, y,

•
y) dt, (4.4)

where

L̂(K, L, p, q,
•
q, σ, τ, x,

•
x, y,

•
y) = rµ · (q ∧ L)− c(L)− d(K + L)

+p ·
{
•
q − λ + β ·

(
(q − L)+ − (q −K − L)+)

+γ · (q −K − L)+ + µ · (q ∧ L)
}

+σ ·
(
•
x− β ·

(
(q − L)+ − (q −K − L)+))

+τ ·
(
•
y − γ · (q −K − L)+

)
. (4.5)

with x(0) = y(0) = 0, x(T ) = Ea, and y(T ) = Eb.
What follows from the Euler-Lagrange equations for x and y (see Lanczos [24]) is that σ

and τ are constants, since

d

dt

∂L̂
∂
•
x

=
∂L̂
∂x

= 0 ⇒ •
σ = 0 and

d

dt

∂L̂
∂
•
y

=
∂L̂
∂y

= 0 ⇒ •
τ = 0. (4.6)

In classical mechanics, x and y are considered position variables with σ and τ as their
corresponding momentum variables. These conditions imply that we have a conservation of
momentum principle. In the next section we show how the SLA targets can be replaced by
an appropriate selection of values for the constants σ and τ .

4.2 Equivalent Formulation with Penalties

Since σ and τ can be viewed as constants, then any solution to Optimization Problem 4.1
can also be used to find schedules K and L such that we

maximize

∫ T

0

L(K, L, p, q,
•
q) dt, (4.7)

where

L(K, L, p, q,
•
q) ≡ rµ · (q ∧ L)− σ β ·

(
(q − L)+ − (q −K − L)+)

−τ γ · (q −K − L)+ − c(L)− d(K + L)

+p ·
{
•
q − λ + β ·

(
(q − L)+ − (q −K − L)+)

+γ · (q −K − L)+ + µ · (q ∧ L)
}

, (4.8)
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provided that the isoperimetric constraints of (4.3) are satisfied. This is a Lagrangian for-
mulation of the following equivalent optimization program:

Optimization Problem 4.2 (Fluid Scheduling with Penalties) Find K and L so that
we

maximize

∫ T

0

rµ · (q ∧ L)− σβ ·
(
(q − L)+ − (q −K − L)+)

−τ γ · (q −K − L)+ − c(L)− d(K + L) dt, (4.9)

with the control constraint:

•
q = λ− β ·

(
(q − L)+ − (q −K − L)+)− γ · (q −K − L)+ − µ · (q ∧ L) . (4.10)

We then solve for the fluid schedule by finding positive constants σ and τ such that the
isoperimetric constraints of (4.3) are satisfied. Thus we reinterpret our two constants as
follows:

σ = music abandonment penalty per customer (those above L(t) but below K(t) + L(t)),

τ = busy signal abandonment penalty per customer (those above K(t) + L(t)).

The search for the appropriate σ and τ is referred to in this paper as the calibration of the
penalties to the SLA targets.

In the language of classical mechanics (see Lanczos [24]), our profit integral is called the
action. Our Lagrangian has the units of energy for a physical system and plays the role of
a profit rate for our call center model. The fluid approximation q for the total number of
customers in the call center plays the classical mechanical role of the position variable. The
multiplier p is the generalized momentum variable. For our call center fluid model it has
the economic interpretation of the opportunity cost per customer. It measures of the impact
of an additional customer joining the system on the total profit. Customers may influence
the total profit in three ways. First, the call center may incur a penalty when a customer
abandons due to having no agents or telephone lines available. Second, the call center incurs
a penalty when a customer abandons due to having no agents available. Finally, the call
center receives revenue only when a customer departs due to a service completion.

Approaching the end of the time interval T , an additional arriving customer has little
effect on the total profit. The late arriving customer neither has time to abandon nor time to
depart due to a service completion. Thus the Lagrange multiplier process { p(t) | 0 ≤ t ≤ T }
has the terminal condition of p(T ) = 0. We assume that no penalty is assessed for customers
remaining in the queue after time T . Customers remaining in the system after this time
become the initial load for the next planning interval.

Table 1 summarizes the relationship between the call center quantities of interest and their
classical mechanical counterparts. Viewing the call center optimization problem as a me-
chanics problem provides insight and additional intuition into the analysis and computation
of the optimal staffing and provisioning schedules for the operations of this communications
service.

Having established that the fluid scheduling problem with SLA targets is equivalent to a
calibrated fluid scheduling problem with penalties, it remains to solve either problem. In the
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Mechanics Call Center Operations

position number of customers in service (q)

velocity customer flow rate (
•
q)

Lagrangian value rate (L(q,
•
q))

momentum opportunity cost per customer (p)

Hamiltonian opportunity cost rate (H(p, q))

action Bellman value function (V(q))

Table 1: Classical Mechanical Terms and their Call Center Counterparts

next section, we formulate a solution in terms of competing Lagrangians for the fluid problem
with penalties when we assume that our cost functions c and d are increasing and concave.
We use the word “increasing” instead of the more commonly used phrase “non-decreasing”
to include functions with zero derivatives.

4.3 Competing Lagrangians

To simplify our analysis, we assume that c and d are both non-negative, increasing, concave
functions. This follows from assuming economies of scale for the costs of staff and telephone
lines. A case can be made for non-negative, increasing, convex functions in the context of a
limited supply of agents with specialized skill sets (see Borst, Mandelbaum and Reiman [5]).

With the concave assumption, we show that Optimization Problem 4.2 reduces to the
analysis of three “competing” Lagrangians L1, L2 and L3, where

L1

(
p, q,

•
q
)

≡ L
(
0, 0, p, q,

•
q
)

= p ·
(
•
q − λ

)
+ (p− τ) γ q − c(0)− d(0) (4.11)

L2

(
p, q,

•
q
)

≡ L
(
q, 0, p, q,

•
q
)

= p ·
(
•
q − λ

)
+ (p− σ) β q − c(0)− d (q) (4.12)

L3

(
p, q,

•
q
)

≡ L
(
0, q, p, q,

•
q
)

= p ·
(
•
q − λ

)
+ (p + r) µ q − c (q)− d (q) . (4.13)

This result follows from our fundamental lemma.

Lemma 4.3 If c and d are increasing, concave functions, then we have

max
K,L≥0

L(K, L, p, q,
•
q) = L(0, 0, p, q,

•
q) ∨ L(q, 0, p, q,

•
q) ∨ L(0, q, p, q,

•
q) (4.14)

which yields

max
K,L≥0

∫ T

0

L(K, L, p, q,
•
q) dt =

∫ T

0

max
K,L≥0

L(K, L, p, q,
•
q) dt. (4.15)
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Proof: We assume that limL→∞ c(L) is finite, and denoted by c(∞). We make similar
assumptions for d and let d(∞) be that limit. When these limits are infinite, the resulting
proof is simpler.

First observe that given the definition of the Lagrangian by (4.8) we have

lim
L→∞

L(K, L, p, q,
•
q) = rµ · q + p ·

{
•
q − λ + µ · q

}
− c(∞)− d(∞) ≤ L3(p, q,

•
q). (4.16)

Similarly, we have

lim
K→∞

L(K, L, p, q,
•
q) = rµ · (q ∧ L)− σβ · (q − L)+ (4.17)

+p ·
{
•
q − λ + µ · (q ∧ L) + β · (q − L)+

}
− c(L)− d(∞)

≤
(
−σβ · q + p

{
•
q − λ + β · q

}
− c(0)− d(∞)

)
(4.18)

∨
(
rµ · q + p

{
•
q − λ + µ · q

}
− c(q)− d(∞)

)
∨
(
rµ · q + p

{
•
q − λ + +µ · q

}
− c(∞)− d(∞)

)
≤ L2(p, q,

•
q) ∨ L3(p, q,

•
q). (4.19)

The critical step in this proof is from (4.17) to (4.18). This follows from the fact that
every summand on the righthand side of (4.17), except for c, is a piecewise linear function
of L. More specifically, they are linear over the intervals (0, q] and [q,∞). Since −c is
everywhere convex, then the limit of the L as K → ∞ is a convex function of L over each
of these intervals. Now we apply the maximum modulus property of convex functions. The
inequality (4.18) then follows from setting L equal to the values 0, q and ∞ in (4.17).

We now observe that L, when we ignore the terms involving c and d, is a piecewise linear
function of K and L. Moreover, these terms are linear over the regions given by Figure
(5). It follows that the Lagrangian is piecewise convex over these regions. Now we invoke
the maximum modulus property of convex functions and the limiting behavior at infinity
to show that the maximum must occur at one of the three vertices identified by the figure,
namely (0, 0), (q, 0) or (0, q).

At a given time t, we define the largest of these three Lagrangians to be the one that is
dominant. We now have the following optimal scheduling policy for the fluid penalty model.

Theorem 4.4 Given p and q, construct K∗ and L∗ as follows:

K∗(t) =

{
q(t) if L2 is dominant,
0 otherwise.

(4.20)

and

L∗(t) =

{
q(t) if L3 is dominant,
0 otherwise.

(4.21)

If p and q maximize
∫ T

0
L dt, then we have:
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Figure 5: Proof of Fundamental Lemma for Competing Lagrangians.

1. When L1

(
p, q,

•
q
)

is dominant, then p and q solve the Euler-Lagrange equations

•
p = (p− τ) γ and

•
q = λ− γq. (4.22)

2. When L2

(
p, q,

•
q
)

is dominant, then p and q solve the Euler-Lagrange equations

•
p = (p− σ) β − d′(q) and

•
q = λ− βq. (4.23)

3. Finally, when L3

(
p, q,

•
q
)

is dominant, then p and q solve the Euler-Lagrange equations

•
p = (p + r) µ− (c + d)′(q) and

•
q = λ− µq. (4.24)

One immediate consequence of this theorem is that K∗(t) and L∗(t) are complementary
variables, i.e. K∗(t) · L∗(t) = 0 for all 0 ≤ t ≤ T .

If we compare (4.11)-(4.13) with (2.8)-(2.10), we see that

Li

(
p, q,

•
q
)

= p ·
(
•
q − λ

)
+ `i(p, q) (4.25)

for i = 1, 2, 3. This means that the determination of which Li is dominant is equivalent to
finding which `i is dominant. Moreover, for the special case of c and d being linear, we can
subtract c(0) + d(0) from all the Li’s and divide them by the always positive factor q. This
reduces the comparisons of the competing Lagrangians to the comparisons of Lagrangian
lines that are purely linear functions of p, as presented in Hampshire and Massey [18].

Summarizing the Lagrangian analysis in Table 2, we see that our fluid model has three
operational modes of behavior. When K∗(t) = L∗(t) = 0, the model is in “busy signal”
mode and the dynamics of q are the same as an infinite server queue with service rate γ.
When K∗(t) = q(t) and L∗(t) = 0, the model is in “music” mode and the dynamics of q
are the same as an infinite server queue with service rate β. Finally, when K∗(t) = 0 and
L∗(t) = q(t), the model is in “agent” mode and the dynamics of q are the same as an infinite
server queue with service rate µ. It is precisely these operational modes that we use when
formulating our fluid modified offered load technique in the next section.
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Operational Dominant Optimal Optimal Dynamics Dynamics
Mode Lagrangian K∗ L∗ of p of q

“busy signal” L1(p, q,
•
q) 0 0

•
p = (p− τ) γ

•
q = λ− γ q

“music” L2(p, q,
•
q) q 0

•
p = (p− σ) β − d′(q)

•
q = λ− β q

“agent” L3(p, q,
•
q) 0 q

•
p = (p + r) µ− (c + d)′(q)

•
q = λ− µ q

Table 2: Competing Lagrangian, Fluid Scheduling Analysis.

4.4 Fluid Modified Offered Load

The operational modes of our fluid model for optimal scheduling suggest that we can find
a near optimal schedule by having our original call center model with blocking follow the
same dynamic where K(t) · L(t) = 0 holds for all t. Our call center model is then in busy
mode when K(t) = L(t) = 0 holds for all t, music mode when only L(t) = 0 holds for all t,
and agent mode when only K(t) = 0 holds for all t. Observe that the stochastic behavior of
QL/0 or Q0/K is then the same as for an Erlang loss model with non-homogeneous Poisson
arrival rate λ. We have service rate µ for QL/0 but our “service rate” for Q0/K is the regular
abandonment rate β.

We estimate the distribution of the time varying Erlang loss system by the modified
offered load (MOL) approximation of Jagerman [21]. We simply apply the mean of the
associated infinite server queue, which has a Poisson distribution, to the Erlang blocking
formula, which is the conditional probability of a Poisson random variable or

P
{
QL/0(t) = `

}
≈ P {Q∞(t) = ` |Q∞(t) ≤ L} , (4.26)

where ` = 0, 1, . . . , L. Massey and Whitt [28] provide bounds on the accuracy of this
approximation.

In telecommunications, the mean of Q∞ is referred to as the offered load and the mean
of QL/0 is called the carried load. Typically a fluid approximation of a queueing system
can only give us a good estimate of the mean queueing behavior. The MOL approximation
gives us a technique to circumvent this problem and allow us to estimate the probability of
blocking in terms of the offered load. Moreover, the offered load is the mean of a Poisson
random variable, so the square root of the offered load is also the standard deviation for this
infinite server queue.

Our fluid model analysis suggests that we can approximate the distribution of the call
center blocking model by using the MOL approximation with q(t) as the offered load and ini-
tially dq(t)e as the number of agents L(t) in agent mode or buffer spaces K(t) in music mode.
This is not adequate for estimating the average number of customers who are blocked from
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the system since this involves multiplying the arrival rate by the probability of blocking. The
fluid approximates the mean of the underlying queueing distribution. To use it to estimate
the distribution however, we need to add to the mean some multiple of an approximation
to the standard deviation for the distribution. Moreover, this is an important issue for our
call center model since our revenue comes only when the system is in agent mode. Hence, a
good estimate of the blocking probability is critical to issues of profit maximization.

Motivated by square root safety staffing (Jennings et al. [22]), our fluid modified offered
load approximation starts with the solution of the fluid model with penalties. The first
application of the modified offered load method to refining our scheduling algorithm is to
replace the isoperimetric constraints of (4.3) with∫

{music mode}

β · q(t) · (1− b(0, q(t))) dt = Ea (4.27)

and ∫
{busy signal mode}

λ(t) dt +

∫
{music mode}

λ(t) · b(0, q(t)) dt +

∫
{agent mode}

λ(t) · b (χ(t), q(t)) dt = Eb

(4.28)
where for all a and q(t) ≥ 0, b(a, q(t)) equals the Erlang blocking formula with offered load
q(t) and dq(t) + a

√
q(t)e telephone lines or

b(a, q(t)) ≡ q(t)dq(t)+a
√

q(t)e

dq(t) + a
√

q(t)e!

/dq(t)+a
√

q(t)e∑
i=0

q(t)i

i!
. (4.29)

Based on our MOL approximations, we are estimating the SLA for the blocking call center
model. We now use these isoperimetric conditions for the calibration of σ and τ , once we
select an appropriate value for a.

The choice of a is a refinement of our staffing policy by adding agents during the agent
mode of our staffing policy so that L(t) = dq(t) + a

√
q(t)e. In the language of offered load

we are perturbing the offered load mean behavior by some multiple of its standard deviation.
We think of square root safety staffing as another variation to the theme of modified offered
load. Using a limit theorem due to Jagerman [21], we have an asymptotic estimate for the
Erlang blocking formula with square root safety staffing

lim
z→∞

√
z · b(a, z) =

φ (a)

Φ (a)

where φ and Φ, given by (2.15), are respectively the density and the cumulative distribution
function for a mean zero, unit variance Gaussian random variable.

Our selection of a is driven by the goal of profit maximization. When we are in agent
mode, we have a pure loss system with no delay, hence no abandonment. As a consequence,
all admitted customers immediately receive service and generate r units of revenue. This
means that rλ(t) · P

{
QL/0(t) > 0

}
− (c + d)(L(t)) equals the instantaneous profit rate at
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any given time during agent mode. This is the arrival rate of customers admitted into
the system minus the immediate provisioning cost rate for their service. Using our MOL
approximations, we obtain

rλ(t) · P
{
QL/0(t) > 0

}
− (c + d)(L(t))

= rλ · P
{

Qdq(t)+a
√

q(t)e/0
(t) > 0

}
− (c + d)

(
dq(t) + a

√
q(t)e

)
≈ rλ(t) · (1− b(a, q(t)))− (c + d)

(
q(t) + a

√
q(t)

)
≈ rλ(t) ·

(
1− 1√

q(t)

φ(a)

Φ(a)

)
− (c + d)

(
q(t) + a

√
q(t)

)
For our fluid modified offered load approximation, we set a = χ(t), the first positive

number such that

rλ(t) ·

(
1− 1√

q(t)
· φ(χ(t))

Φ(χ(t))

)
− (c + d)

(
q(t) + χ(t)

√
q(t)

)
= max

a≥0

(
rλ(t) ·

(
1− 1√

q(t)
· φ(a)

Φ(a)

)
− (c + d)

(
q(t) + a

√
q(t)

))
(4.30)

We define χ(t) to be our square root safety staffing factor. By (4.30) we see that it gives us
a staffing level that maximizes the approximate profit rate for our call center model during
agent mode which reduces to the equivalent statement (2.14). When χ > 0, it also solves
the equation

rλ(t)

q(t)
· φ(χ(t))

Φ(χ(t))
·
(

χ(t) +
φ(χ(t))

Φ(χ(t))

)
= (c + d)′

(
q(t) + χ(t)

√
q(t)

)
, (4.31)

since

0 =
d

da

∣∣∣∣
a=χ(t)

[
rλ(t) ·

(
1− 1√

q(t)
· φ(a)

Φ(a)

)
− (c + d)

(
q(t) + a

√
q(t)

)]

=
−rλ(t)√

q(t)
· d

da

∣∣∣∣
a=χ(t)

φ(a)

Φ(a)
− (c + d)′

(
q(t) + χ

√
q(t)

)
·
√

q(t)

=
rλ(t)√
q(t)

· φ(χ(t))

Φ(χ(t))
·
(

χ(t) +
φ(χ(t))

Φ(χ(t))

)
− (c + d)′

(
q(t) + χ(t)

√
q(t)

)
·
√

q(t).

We summarize the FMOL algorithm in Table 3. The FMOL approximation of the revenue
is

rµ

∫
{agent mode}

q(t) · (1− b (χ(t), q(t))) dt. (4.32)
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Operational Dominant Optimal Optimal Abandonment Blocking
Mode Lagrangian Term K∗ L∗ Rate Rate

“busy signal” `1(p, q) 0 0 0 λ

“music” `2(p, q) bqc 0 β · q · (1− b(0, q)) λ · b(0, q)

“agent” `3(p, q) 0 dq + χ
√

qe 0 λ · b(χ, q)

Table 3: Fluid Modified Offered Load Scheduling.

5 Numerical Implementation of the Algorithm

Numerically, the goal of our algorithm is to find positive penalty values σ and τ such that
we satisfy the isoperimetric constraints of (2.11) and (2.12) where q paired with p solves
the competing Lagrangian equations (2.5)-(2.10) and χ is the smallest positive number that
satisfies (2.14) or solves (4.31).

We reduce the complexity of the search for the optimal pair by computing a gradient.
In particular the gradient, with respect to this penalty pair, of the action or the integral of
the optimal fluid Lagrangian with penalties. Our next candidate for σ and τ , then comes
from updating the old pair by adding some scalar multiple of this gradient. Using our
competing Lagrangian result and the Envelope Lemma [8], we give an analytic expression
for the derivative of the action with respect to τ ,

d

dτ

∫ T

0

L
(
t,K(t), L(t), p(t), q(t),

•
q(t)

)
dt

=

∫ T

0

∂

∂τ

(
L1

(
t, p(t), q(t),

•
q(t)

)
∨ L2

(
t, p(t), q(t),

•
q(t)

)
∨ L3

(
t, p(t), q(t),

•
q(t)

))
dt

=

∫
{busy signal mode}

∂

∂τ
L1

(
t, p(t), q(t),

•
q(t)

)
dt

= −γ

∫
{busy signal mode}

q(t) dt. (5.1)

By a similar argument, we obtain a formula for the derivative in the σ direction

d

dσ

∫ T

0

L
(
t,K(t), L(t), p(t), q(t),

•
q(t)

)
dt = −β

∫
{music mode}

q(t) dt. (5.2)

The competing Lagrangian equations are solved by a backward-forward shooting method.
From a computational perspective, it is best to view q as a process that evolves forwards in
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Figure 6: Comparison of the Simulated Call Center with Blocking to its FMOL Approxima-
tion.

time with a given initial value q(0) but p as a process that evolves backwards in time with a
terminal value p(T ) = 0. For more background on shooting methods see Bryson and Ho [7].

5.1 Numerical Example

Now, we present a numerical example to demonstrate the algorithm. The original call center
model is simulated using the near optimal schedule generated by our FMOL algorithm. The
simulated performance quantities and profit are compared to their fluid approximations.

We consider an example where the arrival rate is λ(t) = 300.0+300.0∗sin(2.0∗π∗(t/24.0)),
service rate µ = 6.0, and abandonment rate β equals 12.0. The target fractions of customer
abandonment and blocking are εa = 0.10 and εb = 0.05 and respectively. The revenue
per serviced customer r is normalized to equal 1.0. The cost rate for agents is c(x) =
300.0∗log(1.0+(x∗(exp(1.0)−1.0)/50.0)) and the cost rate for line usage is d(x) = log(1.0+x).
The initial number of customers in the system is Q(0) = 50. We achieve the abandonment
and blocking SLA targets by setting the penalties to σ = 0.10 and τ = 0.12. The resulting
FMOL schedule visits each mode of operation at least once, a consequence of the dynamic
demand setting.

We simulate 10,000 realizations of the original call center model under the FMOL sched-
ule. Figure 6 compares the simulated mean queue length to the modified offered load approx-
imation of the queue length under the near-optimal schedule. Table 4 compares the aban-
donment and blocking fractions as well as the profit of the simulated original finite buffer
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Figure 7: Fluid Optimal Schedule

call center model with the fluid modified offered load approximation of the same quantities
under the FMOL schedule complete with the relative errors for all three quantities.

5.2 Fluid Dynamics

The left hand plot of Figure 7 displays the fluid optimal schedule of K and L versus time
t. The right hand plot displays the phase space trajectory of p versus q. The schedule visits
all three optimal staffing modes. In terms of the call center, the phase space diagram is a
plot of the opportunity cost per customer p versus a fluid approximation of the number of
customers in the system q. One indication of the Lagrangian being time dependent is that
the phase space plot intersects itself. This would not be the case if our arrival rate λ were a
constant.

Abandonment Blocking Total
Fraction Fraction Profit

Fluid Modified Offered Load Estimation 0.0498 0.0996 504.5459
Finite Buffer Call Center Simulation 0.0501 0.0993 501.3786

Relative Error −0.006 0.003 0.006

Table 4: SLA and Profit Comparisons of the FMOL and Call Center with Blocking Simula-
tion
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Figure 8: Dynamics of the Fluid Queue Length (q)

Figure 8 displays the dynamics and phase space plot of only the fluid queue length. The
critical values of the fluid queue length are labeled on both the dynamics (q versus t) and

phase space (q versus
•
q) plots. The labeled points on the phase space plot correspond in

time to the labeled points on the plot of the dynamics. Curve segment AC corresponds to
the agent mode, where the maximum number of agents occurs at B . The jump in the phase
plot at C corresponds to switching from agent mode to music mode. The system is in music
mode along curve segment CE. The jump in the phase plot at D is due to switching from
music mode to busy signal mode. During the interval EF the busy signal model is optimal.
Music mode then becomes optimal on the curve segment segment FG. The jump in the phase
plot at F is due to switching from music mode to agent mode. Finally, we return to agent
mode on the curve segment GH. Figure 9 displays the dynamics of the opportunity cost per
customer. The analogous critical values of the opportunity cost per customer p are labeled.

Notice that p peaks at time t during the busy signal mode only when
•
p(t) = (p(t)− τ) γ = 0

which means that p(t) = τ = 0.12. Moreover the derivative of a constant is zero so once p
equals τ , it should stay there for the duration of the busy signal mode. All these dynamics
are consistent with the plot of p over time.

5.3 Discrete Schedules, Continuity and Local Optimality

Our FMOL algorithm gives a call center schedule where we assume that the numbers of
agents and lines are continually updated at any time. We now construct a series of schedules
from the FMOL schedule that are only updated at constant, discrete time intervals. For any
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Figure 9: Dynamics of the Opportunity Cost (p)

positive integer n, we create a dyadic partition of (0, T ] where divide it up into 2n disjoint
intervals.

Next, we set the constant number of additional lines K over any given subinterval equal
to the minimum of K∗ over that same subinterval. Having fewer servers than needed reduces
the average number of abandoning customers. Using a similar logic, we should also set the
number of agents over any given subinterval equal to the maximum of L∗ over that same
subinterval. Here it is the case that the addition of agents also reduces the average number of
blocked customers. This type of schedule, rounding downwards for L and rounding upwards
for K, is similar to design methods discussed in Wallace [29] and [27].

The end result is a series of schedules that are feasible, i.e. their performance is bounded
above by the SLA targets of εa = 0.05 and εb = 0.10. As we see in Figure 10, where n grows
and the length of a subinterval equals 1/2n, the abandonment and blocking percentages (left
and middle plots respectively) converge monotonically upwards to their SLA targets. Here,
we are simulating an Mt/M/Lt/Kt queue with abandonment according to these schedules.
This suggests that the performance of the FMOL schedule can be approximated with ar-
bitrary precision by a schedule with regular, discrete staffing (and provisioning) intervals.
Thus our performance metrics behave as continuous functions of the scheduling. Moreover,
observe that the mean profit (right plot) of these feasible schedules is also monotonically
increasing in n. All these profits fall below the one given by the FMOL schedule. This sug-
gests that FMOL is locally optimal for this sequence of schedules and possibly near-optimal
in general.
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Figure 10: Plots of the Abandonment and Blocking Percentages as well as the Profit for
Simulations of the Call Center Model with Blocking for a Dyadic Partition of the FMOL
Schedule

6 Summary and Conclusions

We model a call center as a multi-server queue with finite additional waiting spaces and
abandonment. We assume that there is a reward for every successful service completion, SLA
target levels for the fractions of calls that are abandoned and blocked, and a cost rate for the
number of agents and telephone lines used. The finite capacity model is then approximated
by a Markovian service network. Our specific model is an infinite buffer, multi-server queue
with regular abandonment, which also has the feature of fast abandonment.

Motivated by growing a business to match a corresponding growth in customer demand,
our MSN model scales to a deterministic “fluid” model that is a dynamical system. Moreover,
this Lagrangian analysis shows that the use of SLA target levels is equivalent to using
abandonment and blocking penalties for the purposes of optimizing our call center. By
using the theory of dynamic optimization, we formulate a fluid optimal staffing schedule for
profit optimality. The optimal staffing and provisioning schedules are generated by one of
three optimal modes where we select the one with the dominant profit rate. The three modes
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are:

1. No agents and no telephone lines (busy signal).

2. Telephone lines but no agents (music).

3. Agents but no additional telephone lines (talking to an agent).

Given that each of the three optimal staffing modes correspond to loss systems, we can use
the modified offered load approximation to improve the accuracy of the fluid model. Insights
from this approximation method lead to refining the fluid schedule by adding on a quantity
that is proportional to the square root of the number of agents during the agent mode of
operation given by the fluid model. The square root safety factor is then selected to balance
the marginal revenue and marginal costs of adding additional agents and lines. Moreover,
the modified offered load approximation also leads to accurate estimates of blocking rate,
the abandonment rate, and the number of customers in the system. Thus these modified
offered load approximation methods allows us to estimate probabilistic quantities typically
beyond the scope of a fluid model.

We present a numerical example that visits all three operational modes. This occurs when
we can exploit our economies of scale assumption. The cost per customer for providing the
necessary resources for service decreases as the total number of customers in service increases.
We use the FMOL approximations to obtain estimates of blocked customers, the number of
abandoning customers, revenue, and the number of customers in the system. We compare
these results to a simulation of the original call center model with blocking under the FMOL
schedule. Finally, we simulate perturbed versions of the near-optimal schedules that satisfy
the SLA targets. The resulting perturbed schedules consistently produce lower profits. These
results suggest that our schedule is locally optimal.
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