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In this paper, we model a call center as a preemptive-resume priority queue with time-varying arrival rates 
and two priority classes of customers.  The low priority customers have a dynamic priority where they become 
high priority if their waiting-time in queue exceeds a given service-level time.  The performance of the call 
center is measured by the mean number in system for the two customer classes.  A fluid approximation is pro-
posed to estimate the mean number in system for each class.  The quality of the approximation is tested by 
comparing it with a stochastic simulation model of the system.  Finally, using the fluid approximations, we 
discuss how to compute the mean number in system for each class and estimate the overall staffing level, or 
number of agents. 
 

Introduction 
Call centers have become the primary channel of cus-
tomer interactions, sales, and service for many busi-
nesses.  Traditional call center performance modeling 
is based on simple Markovian queueing models,  
developed to analyze telephone traffic across the Pub-
lic Switched Telephone Network (PSTN).  Closed-
form solutions for most of these queueing models are 
only available for steady-state behavior.  Thus, these 
solutions are not applicable to practical call centers 
because of the time-varying, or transient, behavior of 
the arrival call process.  In addition, these traditional 
models become problematic as call centers progress 
from handling only voice calls to handling multiple 
types of “calls,” such as voice, e-mails, faxes, and 
Web chat sessions.  In other words, they do not accu-
rately analyze the performance of modern, multimedia 
call centers. 

To better measure the performance of multimedia 
call centers over time, we developed mathematical 
fluid approximations instead of using simple Mark-
ovian queueing models.  We modeled a multimedia 
call center as a preemptive-resume priority queue with 
time-varying arrival rates and two priority classes of 
customers.  The high priority customer class consists 
of regular telephone, or voice, calls, while the low 
priority customer class contains e-mail “calls.”  The 
low priority calls have a dynamic priority where they 
are upgraded to a high priority customer based on their 
service level.  Usually, this service level is the prob-
ability that the waiting-time in queue is less than a 
given time duration. 

The call center performance measured by our 
fluid approximation is the mean number of calls in the 

system for each customer class.  Our preemptive-
resume, time-varying model is a complex one that 
cannot be solved with traditional Markovian queueing 
techniques.  The fluid approximations are computed 
using an asymptotic scheme where the ratio of the 
offered load to the number of servers remains con-
stant.  The mean number in system for both customer 
classes is a solution to a system of differential equa-
tions.  In this paper, we investigate the effectiveness of 
the fluid approximations through a comparison with 
the stochastic, discrete-event simulation method and 
measure the difference between the mean number in 
system computed using both methods.  We also dis-
cuss our results and describe our future efforts for 
computing the mean virtual delay for both customer 
classes. 
 

Call Center Overview 
Traditionally, customers contacted a call center by 
talking to a customer service representative (CSR), or 
agent, over the telephone.  Now, customers can con-
tact an agent over the Internet, either by e-mail or chat 
session. Many companies use call centers—banks, 
financial institutions, information technology (IT) help 
desks, and government agencies.  The managers of 
these call centers attempt to provide their customers 
with efficient and convenient service.  However, their 
job is much more difficult today because there are far 
more products and services being sold and supported 
than a few years ago.  Thus, the managers struggle to 
deliver different service levels to different types of 
customers with different needs and issues. 

The advancement in call center technologies not 
only provides more benefits, but also more challenges.  
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For example, current technologies provide managers 
greater flexibility in routing and queueing calls by 
prioritizing certain types of incoming calls and allow-
ing customers to access call agents with different skill 
sets.  The manager’s job of scheduling agents and  
satisfying multiple customer service levels therefore 
becomes more complex. 
 
Technical Components of a Call  
Center 
A traditional call center has several main components; 
namely, an automatic call distributor (ACD), an 
interactive voice response (IVR) unit, desktop 
computers, and telephones. [1]  The ACD is a 
telephone switch located at a customer’s premises and 
provides methods for the distribution of customer 
calls. [2]  There is a finite number of trunks (i.e., 
telephone lines) connecting the ACD to the PSTN. 

As customer calls arrive, the ACD receives and 
routes them either to the IVR unit where customer 
transactions are handled automatically, or to an idle 
CSR, who provides the necessary service.  If no CSR 
is available, the calls are placed in a queue (i.e., on 
hold).  The CSR responds to the calls routed to them 
using their telephone and desktop computer.  For  
example, if the agent is answering a telephone call, 
that agent can access the customer information data-
base through the desktop computer.  The heart of a 
traditional call center is this dynamic routing of a new 
or pending call by the ACD to the most appropriate 
and available CSR.  This call routing or assignment 
process must take into consideration such factors as 
the call priority, call arrival time, and CSR skills and 
availability.  It requires dynamic, real-time manage-
ment of all CSR skill levels and availability, the 
call/caller identity and status, and customer informa-
tion databases.  Therefore, the flow of an arriving call 
through a call center can be complex. 
 
Call Center Modeling 
The basic structure of the call center can be described 
as a finite capacity, multi-server system.  Customer 
calls arrive at the call center at varying rates on a finite 
number of trunks.  These calls are terminated at the 
ACD switch and are routed to a group of agents.  In a 
multimedia call center, these calls can be voice,  
e-mail, fax, or (eventually) video. 
 
Queueing Methods 
We use queueing models to analyze the performance 
of the call center.  Current analytical models applied in 
practice are based on traditional Markovian queueing 

models.  A Markovian model is represented symboli-
cally as M/M/N/L, where 
 
 M = the arrival process as a stationary Poisson 

process, where the inter-arrival times of custom-
ers, or calls, are exponentially distributed with a 
mean constant call rate (note that Mt identifies a 
non-stationary Poisson process, where the arrival 
call rates vary over time) 

 M = the service times of the calls as exponentially 
distributed random variables 

 N = the number of servers, or call agents, at the 
queue 

 L = the number of spaces available in the system, 
i.e., the total number of servers and queue spaces; 
in call center terminology, this value L is known 
as the total number of trunk lines available to calls 

 
Problem Setting 
We are studying a complex call center system for 
which simple Markovian queueing models do not  
apply.  Our goal is to develop alternative methods to 
estimate the transient performance for our system, 
rather than approximating them with steady-state 
M/M/N/L queueing systems.  Specifically, we devel-
oped a fluid model and a separate simulation model to 
approximate the mean number in system for both high 
and low priority customers at different points in time.  
Our call center is a help desk with two-customer 
classes and a preemptive-resume priority queue disci-
pline.  The high priority customer class consists of 
voice calls, while the low priority customer class con-
sists of e-mails.  Here, we assumed that there are 
enough telephone lines to prevent any call blocking.  
Also, we assumed that the service level for the high 
priority class is high enough that no calls abandon the 
system.  Note that in a general call center environment 
these assumptions are not always valid. 

In our model, the customers are served from two 
distinct virtual queues.  The customers from the lowest 
priority class, i.e., the e-mails, will leave the low prior-
ity queue and enter the higher priority queue based on 
a specified service level parameter.  In this regard, the 
low priority calls will have dynamic priorities.  Our 
goal was to show that the fluid approximations of the 
call center performance are close to the actual per-
formance, as measured by a discrete-event simulation 
model.  Figure 1 displays the queue diagram of our 
model. 

We define the notations in Figure 1 as follows: 
 
 λi(t) represents the arrival rate for class i custom-

ers into queue i,  (i=1,2) 
 Qi(t) represents the number of class i customers in 

the system 
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Figure 1.  Two-Class, Preemptive-Resume Priority Queue With Low Priority Abandonment 

 
 β2 is the abandonment rate of low priority  

customers out of the low priority queue 
 n is the number of servers, or CSRs, in the  

system, which remains constant over time 
 x^y represents the minimum between x and y 
 (x-y)+ represents the maximum between 0 and  

x-y 
 
Markovian Models Based on Erlang 
Through his research on the telephone network in the 
early 1900s, Erlang showed that the arrival process of 
calls over the network to any destination could be 
modeled as a Poisson process. [3]  Although these 
models are primarily used for producing daily call 
forecasts and agent work schedules, they do attempt to 
explain the randomness that exists in call centers.  
This randomness is caused by the variability of call 
arrival patterns and call durations.  The most common 
queueing models use call volumes, call handling 
times, and the number of agents to compute the aver-
age waiting times for customers during steady-state.  
The Erlang-B and Erlang-C models are two traditional 
Markovian models used in practice to estimate the 
performance of a call center.  In both, the arrival proc-
ess of calls to a call center is modeled as a Poisson 
process.  The Erlang-B model can be represented as 
the M/M/n/n queue.  Thus, the inter-arrival call times 
are exponentially distributed with mean 1 / λ, and the 
call service times are also exponentially distributed 
with mean 1/µ.  There are n servers, or call agents with 
a first-come first-serve queue discipline, and a system 
capacity of n calls.  Here, ρ = λ / (µ*n), where the 
quantity λ/µ is defined as the offered load of the traf-

fic.  Because this model assumes a finite system  
capacity of n calls, a call may be blocked from enter-
ing the call center.  This blocking probability, βn, is an 
important performance measure and is given by the 
following steady-state formula: [3] 
 

βn = P({all n servers are busy}) =  ((λ / µ)n / n!) /  
        (Σk   λ / µ)k / k!),  k = 0,…,n. (1) 

 
The above formula is also referred to as the  

Erlang-B, or Erlang Loss formula.  The Erlang-C 
model can be represented as the M/M/n queue.  The 
model is useful when λ/µ < n, where λ is the mean 
arrival call rate, µ is the mean call service rate, and n 
is the number of agents.  Because this model assumes 
an infinite system capacity of calls, there is no prob-
ability of blocking.  Although calls may enter the call 
center when all n servers are busy, they must wait in 
queue before receiving service.  In this model, this 
probability of waiting in queue (i.e., probability of call 
delay), or P(D>0), is important to measure and is 
given by the following formula:  [3] 
 

P(D > 0) = P(at least n calls in system) =  
                  ((n ρn / n!)(1/(1- ρ)) /  

((Σk (n ρk / k!) + (n ρn / n!)(1 / (1-ρ))),  
k =0,…,n-1, (2) 

 
where D is the delay of a customer call.  Also, the 
mean delay, E[D], is given by: [3] 
 

E[D] = (P(D>0)*(e-(n-ρ)µ t)) / (µ∗(n-ρ) ). 
 
The above formulas for the MM/n and M/M/n/n 

queues, and those for the M/M/N/L queue, are used in 
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practice to estimate the number of agents required to 
satisfy customer service levels, and the average delay 
experienced by customers.  These Markovian queue-
ing models are often based on the following key sim-
plifying assumptions. 
 
 Every call is of the same type 
 Every agent can handle calls equally fast 
 The arrival rates do not vary over time, and the 

system enters steady-state under certain condi-
tions 

 Calls are queued on a first-come-first-serve basis 
 
Unfortunately, under these assumptions, the M/M/N/L 
queueing models can sometimes differ significantly 
from the real-world call center performance measures. 

Note that the Erlang-B model underestimates the 
blocking probability of the system by assuming no 
queue forms.  Also, the Erlang-C model overestimates 
the average delay (in queue) experienced by calls by 
assuming that the queue size is infinite.  Therefore, 
these models, and Markovian models in general, have 
some limitations in representing call center systems. 
 

Fluid Approximations 
Service systems models, such as call center models, 
belong to the class of stochastic service network mod-
els. These network models form a special family of 
non-stationary Markov processes where parameters 
such as arrival and service rates are time-dependent.  
More importantly, these models have functional strong 
laws of large numbers and functional central limit 
theorem results for the number of customers in the 
system and the waiting time in queue. [4]  The results 
are developed using an asymptotic limiting process, 
where the number of servers is scaled up in response 
to a scaling up of the arrival rates; in other words, the 
number of servers and arrival rates are multiplied by 
the same factor. 

These limit theorems lead to a tractable set of 
network fluid approximations in the form of a system 
of ordinary differential equations (ODEs).  By  
numerically solving these differential equations using 
either the Euler or Runge-Kutta method, we can com-
pute values for the mean number in system at specific 
points in time.  More importantly, this technique  
allows us to approximate solutions of models that are 
otherwise analytically intractable using Markovian 
queueing techniques. [4]  Therefore, an alternative, 
possibly more robust, method can be developed and 
applied to the performance analysis of service sys-
tems, such as call centers. 
 

Two-Customer Class Model 
Our fluid approximations for the mean number in the 
system will be derived for the two-customer class, 
preemptive-resume priority, Mt/M/n queue.  Since the 
high priority customers can preempt the lower priority 
ones, these customers will essentially receive service 
as if no other type of customer is present in the sys-
tem.  Thus, the high priority customer class results will 
be almost the same as the results for the single cus-
tomer class.  The only difference is the dynamic prior-
ity process for the low priority customers, where these 
customers can leave their queue and enter the high 
priority queue as a high priority customer.  This proc-
ess adds an extra term to the differential equations 
describing the process for the high priority customers. 

Asymptotic Limit Theorems 
The results and theorems presented in this section are 
adapted from those stated by Mandelbaum, Massey, 
and Reiman [4] and Mandelbaum, Massey, Reiman, et 
al. [5]  However, customers are now grouped into two 
classes: high priority and low priority.  High priority 
customers are labeled as class-1 customers, while low 
priority customers are labeled as class-2 customers.  
Thus, all of the random variables of the stochastic 
processes, discussed in Mandelbaum, Massey, Re-
iman, et al., [5] are now random vectors.  For example, 
the Mt/M/n number in system process Q = {Q(t) | t >= 
0} must be defined for two-customer classes.  The 
random variable Q(t) is now defined as the random 
vector Q(t)={Q1(t), Q2(t)}, for all positive real num-
bers t. [6]  Here, the random variables, Q1(t) and Q2(t), 
are the corresponding quantities for class-1 and class-2 
customers, respectively. 

The limit theorem for the functional strong law of 
large numbers can be restated for our model, as fol-
lows. 

Theorem 5.2 
lim η → ∞ {1 /η} Qη = Q(0), (almost surely, i.e., with 
probability 1) 

 
where the convergence is uniform on compact sets of t 
and η is the scale factor for the arrival rate, λ(t), and 
number of servers, n.  Moreover, Q(0) = {Q(0)(t) | t ≥ 
0}=  {Q1

(0)(t), Q2
(0)(t) | t ≥ 0}is uniquely determined by 

the initial function value Q(0)(0) and the differential 
equations: 
 

dQ1
(0)(t) = λ1(t) - µ (Q1

(0)(t) ^ n) -  
     dt         β[Q2

(0)(t)- (n-Q1
(0)(t))+] +; (3) 

 
dQ2

(0)(t) = λ2(t) - µ [Q2
(0)(t) ^ (n-Q1

(0)(t))+]+ -  
     dt         β[Q2

(0)(t)-(n-Q1
(0)(t))+] +, (4) 
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where [Q2
(0)(t)-(n-Q1

(0)(t))+] + is the number of custom-
ers in the low priority queue. 

This theorem states rigorously that Qη ≅ ηQ(0) for 
large η, where Q(0) is called the fluid approximation 
for Qη.  In other words, as the offered load and number 
of servers becomes large, the fluid approximation pro-
vides a good estimate to the mean number in system, 
Q(t).  The proof of the theorem is given in Kleinrock, 
1975. [3] 
 

Simulation Model 
The final method used to compute the mean number in 
system for high and low priority customers is a dis-
crete-event simulation model.  Our model approxi-
mates an Mt/M/n queue where the arrival process is a 
time-varying Poisson process, and the service times 
are exponentially distributed.  Also, there are two 
classes of customers that arrive to the system, where 
the lower class is upgraded to the higher class status, 
as discussed earlier. 
 
Discrete-Event Simulation 
Discrete-event simulation deals with representing a 
time-varying system with a series of state variables 
that change instantaneously at distinct points in time. 
[6]  In mathematical terms, the system can change at 
only a countable number of points in time.  The state 
variables in our simulation are the number of class-1 
and class-2 calls in the call center, or system.  The 
events that change the state of the system are the arri-
val and departure of customers, or calls, into and out 
of the call center.  Therefore, discrete-event simulation 
is used to implement the queueing model of our call 
center.  Note that we implemented our simulation 
model using the C-programming language. 
 
Arrival Process 
One of the main components of the stochastic simula-
tion is the arrival process.  We chose to approximate 
the true arrival rate function as a piecewise linear 
function over a set of disjoint 30-minute time subin-
tervals [ta, ta+1] which partition the overall finite-time 
horizon interval [0, T], where a=1,2, …, m-1, and m 
represents the number of 30-minute subintervals. 

Since our model supports two types of customers, 
λ(t) is the overall arrival rate and is defined as λ(t) = 
λ1(t)+ λ2(t), where the arrival rates for the high priority 
customers, λ1(t), and the low priority customers, λ2(t), 
also vary with time.  We randomly determined the call 
type of each customer upon their arrival.  Here, based 
on Poisson thinning, a customer will have call type i 
with probability λi(t) / λ(t). 
 

Comparison Results of Two Models 
Our goal was to compare two different estimates of the 
mean number in system for both customer classes. 
Thus, we compared our results from the fluid model to 
the simulation model for the Mt/M/n, two-class, 
preemptive-resume, dynamic priority queue. 
 
Call Center Data 
We began our computation of numerical results by 
defining the queueing model parameters.  The parame-
ter values were taken from a real-world, help desk call 
center, in which calls represent requests for IT support 
(e.g., network support, password resets, application 
support, etc.).  The help desk was simulated over a  
12-hour day in our fluid and simulation models.  Thus, 
each independent replication simulates the perform-
ance of the help desk over the course of a day.  All the 
rates used in the methods were per-minute rates.  Note 
that in the fluid and simulation methods, a piecewise 
constant function was used for the time-varying arrival 
rate function, λt.  The duration of each value of λt was 
30 minutes.  Thus, λt varies every 30 minutes during 
the 12 hours, or 360 minutes of our time horizon.   
Figure 2 contains a graph of our arrival rate function.  
Therefore, we derived our model parameters, such as 
arrival rates, service rates, service levels, and number 
of agents, from a real-world help desk call center. 

Here, the high priority customer calls were tele-
phone, or voice, calls, and the low priority customer 
calls were e-mails.  Note that many call centers today 
handle both voice calls and e-mails.  However, there 
are some challenges in gathering information about  
e-mail customer interaction with call centers.  For  
example, managers collect more detailed information 
on parameters for telephone calls than for e-mails.  In 
other words, some parameters, such as service rates, 
are not often collected for each e-mail that arrives to a 
call center.  Most call center managers simply use a 
“best effort” approach to handle e-mail customers.  
Also, in some call centers, the group of agents that 
respond to e-mails is not the same as the group that 
respond to voice calls.  Note that our model assumed 
that a single group of agents had the necessary skills to 
respond to both voice calls and e-mails. 

For the multi-server, non-stationary queues, we 
set n=20, where n is the number of agents, or servers.  
Since we are using asymptotic limits for the fluid ap-
proximations, we must scale both the arrival rates and 
the number of agents towards infinity in order to com-
pute accurate fluid estimates.  We used a scale factor 
of 25.  The server utilizations vary over time between 
0.1302 and 1.245, where the maximum value occurs 
from 8:30 to 9:00 AM and the minimum value occurs 
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Figure 2.  Arrival Rates for High Priority (Voice) and Low Priority (E-Mail) Call Classes 

 
from 5:30 to 6:00 PM.  Therefore, our system pro- 
gressed through overloaded (>1, or unstable) and  
underloaded (<1, or stable) phases, as the arrival rates 
vary over time. 

The mean service time for high priority calls was 
8.69 minutes per customer, or equivalently 521.29 
seconds per customer.  The service rate for the high 
priority calls, µ1, was the reciprocal of the mean ser-
vice time, so µ1= 1 / 8.9 = 0.1151 customers per min-
ute.  In our help desk, mean service times were not 
reported for the low priority, or e-mail, customers.  
Thus, we let the service rate for the low priority cus-
tomers equal that of the high priority customers, which 
is not an unreasonable assumption.  Therefore, we set 
µ2 = µ1= 0.1151 customers per minute. 
 
Numerical Results  
We compared the numerical results between the fluid 
approximations and discrete-event simulation esti-
mates for the mean number in the system for each cus-
tomer class.  The mean number in the system was es-
timated at several time points, ti, where the ti’s are 
spaced 60 minutes apart over the time horizon.   
Figures 3 and 4 show the comparison of the mean 
number in the system results for the high and low pri-
ority customers between our fluid and simulation 
models.  Note that for most of the ti’s, the fluid  
approximations are very close to the simulation esti-
mates, for the high priority and low priority calls.  In 
fact, as the offered load, which is a measure of the 
intensity of the calls to the help desk, varies over time, 
the accuracy of our fluid approximations remained 
good.  For example, the largest loads occurred from 
6:30 to 9:00 AM and the smallest loads occurred after 
3:30 PM.  However, our approximations were very 
good in all time periods, but did depend on the scale 

factor.  In other words, at a scale factor of 10, the fluid 
approximations began to converge to the simulation 
estimates.  At a factor of 25, the fluid approximations 
were very close to the simulation estimates.  Beyond a 
factor of 25, the approximations were not much better, 
suggesting that 25 was a good stopping point for our 
scale factor.  Since the fluid approximations for the 
mean number-in-system were very close to their corre-
sponding simulation values, we expected the estimates 
for the mean waiting-time in queue from both methods 
to be close as well.  (Intuitively, the amount of time a 
customer waits in queue depends on the number of 
customers in the system, especially those ahead of the 
customer.) 
 

Conclusions 
We obtained fairly accurate fluid approximations to 
the simulation results for the mean number in system 
for the high and low priority customer classes.  Note 
that the number of differential equations in our fluid 
approximations method is independent of the number 
of servers in the call center.  Thus, the complexity of 
our fluid approximations method does not increase as 
the call center increases in size, or the number of 
agents increases.  However, it is more likely that the 
simulation will increase in complexity as the call cen-
ter becomes larger.  Therefore, our fluid approxima-
tion is a much more scalable solution than the simula-
tion. 
 
Future Research 
Currently, we use our fluid approximations to estimate 
the mean number in system for both customer classes.  
In our future research, we will use our fluid approxi-
mations and simulation model to determine the mean 
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Figure 3.  Fluid and Simulation Comparison for Mean Number in System— 
High Priority 
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Figure 4.  Fluid and Simulation Comparison for Mean Number in System— 
Low Priority 

 
virtual waiting time of the high and low priority cus-
tomers.  Our mean waiting-time results will be an  
extension of the results in Mandelbaum, Massey,  
Reiman, et al. [5] from the single customer class case 
to the two-customer class one.  The waiting-time com-
putation for the low priority customers is more com-

plex than the one for the high priority customers.  If 
these low priority customers are preempted and move 
to the high priority queue, their waiting time will be a 
combination of their time in the low priority queue, 
their partial-service time before being prempted  from 
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a server, and their waiting-time in the high priority 
queue. 

We will then use the mean virtual waiting-time 
approximations to predict an actual staffing level to 
handle the overall number of customers.  The criteria 
for changing the staffing level, or number of servers, 
in our model will be based on a comparison of the 
mean virtual waiting-time for each customer class to 
its corresponding target service level, or mean wait-
ing-time.  The simple staffing algorithm follows. 
 
 Choose an initial staffing level, or value for the 

number of servers, and target service level for the 
high and low priority customers; these values are 
determined from our actual call center data. 

 Compute the mean virtual waiting-time using the 
fluid approximations for each customer class. 

 If the percentage of mean virtual waiting-times is 
greater than the target service level for either 
class, then increment the number of servers by 1. 

 Repeat the second step until the target service 
level is satisfied for both classes of customers. 

 We will use this predicted staffing level in our 
simulation.  Finally, we will verify the accuracy 
of our staffing prediction by comparing the mean 
virtual waiting time from the simulation for each 
class with its corresponding target service level. 
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