
PROVISIONING FOR BANDWIDTH
SHARING AND EXCHANGE

Robert C. Hampshire
Princeton University, Department of Operations Research and Financial Engineering

Engineering Quadrangle, Princeton NJ 08544

rhampshi@princeton.edu

William A. Massey
Princeton University, Department of Operations Research and Financial Engineering

Engineering Quadrangle, Princeton NJ 08544

wmassey@princeton.edu

Debasis Mitra
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974-0636

dmitra@lucent.com

Qiong Wang
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974-0636

chiwang@lucent.com

Abstract Customers of bandwidth services can be divided into two distinct groups: those
customers requesting bandwidth for the future and those desiring bandwidth im-
mediately. We develop a dynamic network provisioning methodology that mini-
mally satisfies the QoS (blocking probability) requirements for the ’on-demand’
customers. Our method is sufficiently general and captures time varying trends in
the demand for services as well as different bandwidth requests for the multiple
classes of customers. This allows a network provider to be efficient in reserving
excess bandwidth for forward contracts. Asymptotic results and bounds for the
Erlang loss system are invoked to obtain simple approximate solutions to this
bandwidth provisioning problem.

Keywords: Bandwidth exchanges, network economics, network provisioning, Erlang B for-
mula, heavy traffic limits, loss systems.
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Introduction

In this paper, we develop a bandwidth provisioning scheme for a service net-
work that satisfies the “on demand” customers. This sets the stage for providing
bandwidth to serve customers with long-term contracts. Consider two broad
categories of demand:

1 Immediate Demands

2 Forward Demands

Immediate Demand (ID) is the traditional category where customers make re-
quests for bandwidth and expect the resources immediately. One advantage to
traditional service is that there are historical records and statistical techniques
for forecasting demand, which is expected to be stable, and describing its sta-
tistical properties, such as distributional information on arrivals and holding
periods. One disadvantage however, is that there are corresponding expecta-
tions on the part of customers for a high quality of service, i.e., low blocking
rates.

Forward Demand (FD), on the other hand, is the service category that is ex-
pected to grow rapidly with the increased availability of bandwidth in the Inter-
net’s infrastructure and universal high-capacity access to the Internet. Consider
the following examples of application services that will create FD. Schools that
offer distance learning, such as MIT or U.C. Berkeley, want to have bandwidth
available from the campus to each learning site commencing at 10 am every
Monday and Thursday during the term. Large corporations want contracts
for guaranteed bandwidth supply for carrying internal communication traffic.
Other carriers lease capacity for an extended period of time to defer capital
investment in infrastructure.

We model the ID requests as multi-class Poisson. Say there aren ID classes,
with classi characterized by(λi, µi, bi), whereλi is the Poisson rate of arrivals,
1/µi is the mean holding time of individual demands, andbi is the bandwidth
demand on individual requests. We leave open for the present the matter of the
distributions of the holding periods. An example of bandwidths demanded by
differing classes is{64 kps, 128 kps, 256 kps, 384 kps}.

FD requests are indexed byi, and thej-th request is characterized by the
four-tuple(Rj , Sj , Tj , bj), whereRj is the time that the request is made,Sj is
the start time of the bandwidth demand,Tj is its termination time, andbj is the
bandwidth requested.

We do not propose any specific statistical model for FD, in part because it
is in a nascent stage, data is unavailable and also, as with any new service,
the demand rates are unstable and unpredictable. It is our expectation that the
holding timesTj−Sj with be typically longer than in ID, and that the requested
bandwidthsbj will also be larger.
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Indeed if the holding timesTj −Sj last for several hours or days, then there
are important consequences on the modelling of ID. It becomes necessary to
incorporate time dependencies, particularly in the arrival ratesλi. We propose
to consider time inhomogeneous Poisson processes, i.e.,λi ≡ λi(t) for i =
1, . . . , n.

This paper focuses on a strategy to satisfy the ID customers. A provisioning
methodology is developed to allocate the least amount of bandwidth needed to
accommodate the QoS requirements of the ID customers, so that more capacity
can be made available to serve the forward demand.

This provisioning scheme is developed first for a single customer class. Each
member of this class requests a unit amount of resources and has identical
demand characteristics that only depend on the current price. An asymptotic
provisioning solution is obtained for the steady-state single class case. Next,
the demand function for this single class case is allowed to depend on time. In
this time-varying single class case an approximation technique is employed to
develop a provisioning solution. The results for the single class steady-state
and time-varying cases are then generalized to a multiple class case. This
generalization allows for multiple customer classes each requesting distinct
amounts of bandwidth and each having unique demand characteristics. Armed
with the single class results and techniques of reversible systems, a multi-class
provisioning solution is realized.

1. Canonical Design Problems for the Erlang Loss Model

Let us first investigate the single customer class case (n = 1). It is assumed
that all the customers in this class request a unit amount of bandwidth(bi = 1)
and are governed by the same demand function that only depends on the price.
Let customers arrive according to a Poisson process, whereλ equals the mean
arrival rate. Moreover, let theholding timefor the unit bandwidth resource be
random and assume that different customers have i.i.d. holding times, where
1/µ equals the mean holding time. The unit amount of bandwidth requested
by a customer is called achanneland we defineL to equals the total number
of channels. The resulting queueing model for this single class case is the
classical Erlang loss model. Assuming a homogeneous Poisson arrival rate, it
is typically denoted as anM/G/L/L queue. When all channels are in use, the
system is calledblockedand we defineε to equal the probability that the system
is blocked.

If there is an infinite amount of bandwidth available, then every customer
requesting a channel receives it. The total number of channelsrequestedby
customers at a given time is called theoffered loadand we defineq to equal its
mean. It is a function of the aggregate demand for bandwidth. TheM/G/∞
(infinite server queue) is viewed as the offered load process for bandwidth
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requests. The steady state distribution for theM/G/∞ queue lengthQ∞ is
Poisson where

Pr(Q∞ = i) =
e−qqi

i!
(1)

for all i = 0, 1, . . . andq = λ/µ. SinceE[Q∞] = Var[Q∞] = q, it follows that
q equals the mean ofQ∞ and

√
q equals the standard deviation ofQ∞.

In the context of this single class, unit bandwidth, classical Erlang loss model,
we can discuss three canonical design problems:

1 The Quality of Service (QoS) Problem.

2 The Provisioning Problem.

3 The Pricing Problem.

In the next section, we generalize these basic problems to the case of a multi-
class bandwidth model.

The first of three problems is thequality of service (QoS) problem. It can be
described graphically by the following block diagram. Formally the problem

ε = ?QoS
ProblemL

q

Figure 1. The quality of service (QoS) problem.

statement is as follows: Given the number of channelsL and the mean of the
offered loadq, what is the resulting probability of blockingε experienced by
the single customer class?

An exact solution to the QoS problem was obtained by Erlang [2]. The
solution is the classicalErlang blocking formula. It states that ifL is the total
number of channels available andq is the mean of the offered load then the
blocking probability equals:

βL(q) =
qL

L!

/
L∑

i=0

qi

i!
. (2)

We can rewrite this formula as a conditional probability of the offered load
process and obtain:

βL(q) = P (Q∞ = L |Q∞ ≤ L ) = P ( L− 1 < Q∞ ≤ L |Q∞ ≤ L ). (3)
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What is probabilistically clear (using the theory of time reversible Markov
chains, see Kelly [7]) butphysicallyparadoxical is that the infinite server queue
which experiences no congestion gives complete insight into the analysis of
systems with blocking. Also this conditional form is quite useful in the heavy
traffic analysis needed for the provisioning problem.

Now we relax the constraints on the arrival process and let customers arrive
according to a non-homogeneous Poisson process where at timet, λ(t) equals
the mean rate of the non-homogenous Poisson process. The offered load process
{Q∞(t) | t ≥ 0 } for this time varying case is theMt/G/∞ queue. At timet,
theMt/G/∞ queue has a Poisson distribution or

P (Q∞(t) = i) =
e−q(t)q(t)i

i!
, (4)

wheneverQ∞(0)has a Poisson distribution, which includesQ∞(0) = 0. More-
over, assuming that the holding times are exponential, the mean of the time
varying offered load process is then:

d

dt
q(t) = λ(t)− µ · q(t). (5)

To model more general service distributions, we can numerically solve a similar
set of ordinary differential equations for a phase type service. The total number
of equations used for such distributions equals the number of service phases.

Now that the distribution of the time varying offered load process is known,
how does one find a solution to the QoS problem? The modified offered load
(MOL) approximation is employed to give an approximate solution to the time-
varying QoS problem. GivenL channels, ifQL(t) equals the number of chan-
nels in use at timet, then

Pr(QL(t) = L) ≈ βL(q(t)) = P (Q∞(t) = L|Q∞(t) ≤ L). (6)

whereq(t) solves the above differential equation. This result can be found
in Jagerman [5]. Error bounds for this approximation are given by Massey
and Whitt [11]. The MOL approximation is at its best during periods of small
blocking probabilities, which in practice is when such approximations are most
useful.

The second canonical problem is theprovisioning problem, which is the
main thrust of this paper. Formally the problem statement is as follows: Given
a mean offered loadq, what is the smallest numberL of channels needed to
guarantee a QoS probability of blocking less thanε?

We use the work on server staffing in Jennings, Mandelbaum, Massey and
Whitt [3] as motivation to develop a provisioning solution. IfL is the amount
of provisioned bandwidth that satisfies the single class QoS constraint, thenL
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Provisioning
Problemε

q
L = ?

Figure 2. The provisioning problem.

should at least be as big as the mean of the offered load. It is also reasonable
to add extra capacity to handle random demand fluctuations bigger than the
mean. In this spirit we set the number of channels equal to the mean plus some
multiplex of the standard deviation of the offered load or

L(q, x) = d q + x
√

q e, (7)

wherex is selected in [3] by computing the inverse of a Gaussian tail distribu-
tion. The inverse of the Gaussian tail distribution is useful for approximating
solutions to provisioning problems for delay systems but not for loss systems.
The more appropriate function to use in this paper is suggested by the work of
Jagerman [6].

Recall that the probability of blockingε equals the following conditional
probability:

βL(q) =
P (Q∞ = L)
P (Q∞ ≤ L)

(8)

whereQ∞ has a Poisson distribution. If we scale up the mean of the offered
load, then we have the asymptotic result

lim
q→∞

√
q · βL(q,x)(q) =

φ(x)
Φ(x)

= “P (N(0, 1) = x |N(0, 1) ≤ x)" (9)

whereN(0, 1) has a normal distribution or formally

φ(x) =
1√
2π

e−x2/2 and Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt. (10)

This result can be found in Jagerman [6].
Now we define an important special function. Letψ be the inverse function

to φ/Φ, where for allx > 0

φ(ψ(x))
Φ(ψ(x))

= x. (11)

The properties of theψ function are of utmost importance to our analysis of the
provisioning problem. We now explore several of the key properties forψ.
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Theorem 1 If ψ is the inverse ofφ/Φ, then it is strictly decreasing with

ψ(y) + y > 0 (12)

for all y > 0. Moreover,ψ is the unique solution to the nonlinear differential
equation

ψ′(y) =
−1

(ψ(y) + y)y
, (13)

with the initial conditionψ(
√

2/π ) = 0.

Proof: We first show thatψ solves the above differential equation. Starting
with the identity

φ(x)
Φ(x)

=
e−x2/2

∫ x
−∞ e−t2/2 dt

=
1∫∞

0 e−t2/2+xt dt
, (14)

we obtain ∫ ∞

0
e−t2/2+ψ(y)t dt =

1
y
. (15)

Now we differentiate both sides byy and get

ψ′(y) ·
∫ ∞

0
te−t2/2+ψ(y)t dt =

−1
y2

, (16)

which gives us

−1
y2

= −ψ′(y) ·
∫ ∞

0
eψ(y)t · d

dt
e−t2/2 dt

= ψ′(y)
(

1 + ψ(y) ·
∫ ∞

0
e−t2/2+ψ(y)t dt

)

= ψ′(y)
(

1 +
ψ(y)

y

)
.

and the differential equation forψ follows from this identity.
Using the above identity (15) and integration by parts, we have

y + ψ(y) =
1∫∞

0 e−t2/2+ψ(y)dt
+ ψ(y) (17)

=
1 + ψ(y)

∫∞
0 e−t2/2+ψ(y)dt∫∞

0 e−t2/2+ψ(y)dt
(18)

=
∫∞
0 te−t2/2+ψ(y)dt∫∞
0 e−t2/2+ψ(y)dt

(19)

which shows thaty + ψ(y) > 0 and completes the proof.
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Theψ function is the inverse of the hazard function. Because theψ func-
tion solves a simple ordinary differential equation, we can easily compute it
numerically. Moreover,ψ is a generic function so we can precompute a lookup
table of values forψ(x) that can be used for all provisioning problems. We use
a second order Runge-Kutta method to computeψ(x), based on the following
approximation:

ψ(x+∆x) ≈ ψ(x)− ∆x

(x + ∆x/2)
(
x + ∆x/2 + ψ(x)−∆x/

(
2x(x + ψ(x))

))

(20)
Given theψ function, we can construct anasymptotic channel provisioning

solution. If ε = βL(q) and we setL = d q + x
√

q e, then

ε ≈ 1√
q
· φ(x)
Φ(x)

implies x ≈ ψ(ε
√

q). (21)

Making this approximation an equality gives us

L = d q + ψ(ε
√

q)
√

q e. (22)

If we define`(z) ≡ z + ψ( ε
√

z )
√

z. We can show from the properties forψ
that

`(0) = 0 and `(L/(1− ε)) ≥ L. (23)

By the continuity of`, there must exist some0 < q ≤ L/(1 − ε) where
`(q) = L. Given the properties ofψ, we have

L = q + ψ( ε
√

q )
√

q > q(1− ε). (24)

Define the carried load to be the mean number of customers that are admitted for
service. IfL is the actual number of channels that gives a steady state offered
load ofq and a QoS ofε, then the carried load isq(1 − ε). This is consistent
with the above inequality.

We now turn our focus to the time varying single class provisioning problem.
An approximate provisioning solution can be realized via the modified offered
load approximation combined with theψ function. The solution takes the same
form as above. The number of provisioned channels equals the mean of the
offered load plus some multiple of the standard deviation of the offered load.
The approximate time-varying provisioning solution is:

L(t) ≈ q(t) + ψ

(
ε
√

q(t)
)√

q(t) (25)

where for the case of exponentially distributed service times,q solves the dif-
ferential equation

dq

dt
(t) = λ(t)− µ · q(t). (26)
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The provisioned number of channels,L(t), is a continuous function of time due
to the continuity ofψ andq(t). SinceL(t) is set according to offered loadq(t),
which is an expected value, it is possible that the actual number of users in the
system exceeds the desired number of channels as specified by equation 25.
This property is a unique by-product of the dynamic provisioning of network
capacity. We define this scenario as aghost state, and apply the following
non-preemptive servicediscipline when the system reaches a ghost state:

The excess channels process their last customers until their jobs are com-
plete.

During this period no new jobs are admitted.

Figure 3 is the state transition diagram for the single class customer case.
It defines three distinct type of states: nonblocking states, blocking state and
ghost states. If the system is in a nonblocking state then a transition to and from
that state due to an arrival or service is allowed. While in a blocking state, any
transition from this state due to an arrival is not permitted. In the ghost states a
transition due to an arrival into a ghost state is forbidden. Only a transition due
to a service from a ghost state is allowed.

blocking
state

0 1 LtLt−1 Lt+1

bx=B max

non−blocking
states

ghost
states

● ● ● ● ● ●

bx=B tbx=B t−b

Lmax

Figure 3. State transition diagram for the single class case.

Before concluding this section, should point out that there is a third design
problem, called thepricing problem. Viewing price as a mechanism to control
the offered load, this reduces to finding an offered loadq that yields a QoS
blocking probabilityε given a total ofL channels. This problem was addressed
by Keon and Anandalingam [8] and for the case of a constant arrival rate,
Courcoubetis and Reiman [1]. Also, a “Gaussian-distribution approximation
based” approach is proposed by Lanning, Massey, Rider and Wang [9] for
single-service models, and a “hazard function approximation” based approach
is introduced for multi-service models in Hampshire, Massey and Wang [4].
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2. Generalization to the Multi-Class Bandwidth Model

The single class results can be generalized to a multiple customer class set-
ting. Suppose that we have a heterogeneous set of customers, where each class
requests differing amounts of bandwidth. Letλ1, . . . , λn, 1/µ1, . . . , 1/µn, and
b1, . . . , bn be respectively, the call arrival rate functions, mean call holding
times, and the amount of bandwidth requested for then different classes of cus-
tomers indexed byi. If there is an unlimited amount of available bandwidth,
then all the classes behave like a collection ofn-independent infinite server
queues. We can then define an offered load model, whereQ

(i)
∞ (t) denotes the

random number of customers simultaneously usingbi units of bandwidth. It
follows that each

{
Q

(i)
∞ (t) | t ≥ 0

}
is anM/G/∞ queueing process where

eachQ
(i)
∞ (t) has a Poisson distribution wheneverQ

(i)
∞ (0) does. If we letR

equal the offered load of the total requested bandwidth, then

R =
n∑

i=1

biQ
(i)
∞ (27)

where in steady stateE[Q(i)
∞ ] = Var[Q(i)

∞ ] = qi = λi/µi. Consequently,

E[R] =
n∑

i=1

biqi and Var[R] =
n∑

i=1

b2
i qi. (28)

Let B be the total amount of available bandwidth. We can then formulate
a carried load model whereQ(i)

B (t) equals the random number of customers
simultaneously usingbi units of bandwidth at timet, given an admission control
policy that rejects any arriving customer requesting more bandwidth than is
available.

We now reconsider the QoS problem for multiple customer classes. The

(ε1, ... , εn) = ?QoS
ProblemB

(b1, ... , bn)

(q1, ... , qn)

Figure 4. The multi-class bandwidth quality of service (QoS) problem.

blocking for classj customers equals the probability of the event that
∑n

i=1 biQ
(i)
B

is greater thanB − bj .
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Since theQ(i)
∞ (t)’s are mutually independent Poisson random variables, we

know that the probability given above is some generic functionβ
(i)
B : <n → <of

theqi(t)’s whereqi(t) = E[Q(i)
∞ (t)]. Letq = (q1, ..., qn) andb = (b1, ..., bn).

In general, ifQ1, . . . , Qn are a collection of mutually independent Poisson
random variables withqi ≡ E[Qi], if we defineβ

(i)
B to be

β
(i)
B (q,b) = Pr


B − bi <

n∑

j=1

bjQ
(j)
B




= Pr


B − bi <

n∑

j=1

bjQ
(j)
∞ ≤ B

∣∣∣∣∣∣

n∑

j=1

bjQ
(j)
∞ ≤ B




=
Pr

(
B − bi <

∑n
j=1 bjQ

(j)
∞ ≤ B

)

Pr
(∑n

j=1 bjQ
(j)
∞ ≤ B

) ,

andq = (q1, . . . , qn). Then this equals the steady state blocking probability
for classi. This result follows from time reversibility as discussed in Kelly [7].

We now reconsider the capacity provisioning problem with time-varying
arrival rates for multiple services. In this case, the blocking at timet for class
j customers equals the probability of the event that

∑n
i=1 biQ

(i)
B (t) is greater

thanB(t) − bj . The modified offered load approximation for this probability
is defined to be

Pr


 B − bi <

n∑

j=1

bjQ
(j)
B (t)


 ≈ Pr


 B − bi <

n∑

j=1

bjQ
(j)
∞ (t)

∣∣∣∣∣∣

n∑

j=1

bjQ
(j)
∞ (t) ≤ B


 .

(29)
One justification for this approximation is that it gives the exact answer when the
arrival rates are constant and the system is in steady state. Thus an approximate
QoS solution is :

β
(i)
B (q(t),b) = Pr


B − bi <

n∑

j=1

bjQ
(j)
∞ (t) ≤ B

∣∣∣∣∣∣

n∑

j=1

bjQ
(j)
∞ (t) ≤ B




=
Pr

(
B − bi <

∑n
j=1 bjQ

(j)
∞ (t) ≤ B

)

Pr
(∑n

j=1 bjQ
(j)
∞ (t) ≤ B

) .

We now reconsider the provisioning problem for multiple customer classes.
If qi is the mean offered load for customers requestingbi units of bandwidth,
then the multiple class provisioning problem is to answer the question: What
is the smallest amountB of bandwidth needed to guarantee a probability of
blocking less thanεi for each classi?
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(b1, ... , bn)

Provisioning
Problem(ε1, ... , εn)

(q1, ... , qn)
B = ?

Figure 5. The multi-class bandwidth provisioning problem.

Recall thatR is the offered load of the total requested bandwidth. IfB is the
amount of provisioned bandwidth that satisfies the multi-class QoS constraints,
thenB should be at least as big as the mean of the offered loadR. It is also
reasonable to add extra capacity to handle random demand fluctuations bigger
than the mean. In this spirit we set the amount of bandwidth equal to the mean
plus some multiplex of the standard deviation of the offered load. As in the
single class case, we scale up the offered load of each class. In this limiting
regime an asymptotic provisioning solution is found. If

B(η, x) ≡ η ·
n∑

i=1

biqi + x

√√√√η ·
n∑

i=1

b2
i qi (30)

whereη is a scaling factor for the offered loads, then we have the limiting result:

lim
η→∞

√
ηβ

(i)
B(η,x)(q,b) =

bi√∑n
i=1 b2

i qi

· φ(x)
Φ(x)

, (31)

whereφ andΦ are defined the same as for the single class case. This limiting
result can be found in the papers of Reiman [13] as well as Mitra and Morrison
[12]. Sinceψ is a decreasing function, then the constraintβ

(i)
B (q,b) ≤ εi

asymptotically (using the value of
√

ηβ
(i)
B(η,x)(q,b) asη → ∞ to approximate

its value atη = 1) implies

bi√∑n
i=1 b2

i qi

· φ(x)
Φ(x)

≤ εi ⇒ x ≥ ψ


εi

bi

√√√√
n∑

i=1

b2
i qi


 . (32)

Our provisioned amount of bandwidth must satisfy the QoS conditions for
all of the classes. Thus ifx satisfies all the QoS conditions, then

x ≥ max
1≤i≤n

ψ


εi

bi
·
√√√√

n∑

i=1

b2
i qi


 (33)
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which is equivalent to

x ≥ ψ


 min

1≤i≤n

εi

bi
·
√√√√

n∑

i=1

b2
i qi


 . (34)

Making this inequality an equality, we have the provisioning solution:

B =
n∑

i=1

biqi + ψ


 min

1≤i≤n

εi

bi
·
√√√√

n∑

i=1

b2
i qi




√√√√
n∑

i=1

b2
i qi. (35)

This result leads to an asymptotic rule of thumb which states:
Asymptotic Rule of Thumb: The dominant QoS classes are the ones with the
smallestεi/bi ratio.

Satisfying their requirements provides more than enough bandwidth for all the
other classes.

These results can be generalized to the time varying arrival case. The ap-
proximate time-varying provisioning solution at timet is

B(t) =
n∑

i=1

biqi(t) + ψ


 min

1≤i≤n

εi

bi
·
√√√√

n∑

i=1

b2
i qi(t)




√√√√
n∑

i=1

b2
i qi(t) (36)

where if we assume that the service time for each class is exponentially dis-
tributed, then eachqi(t) solves the differential equation

d

dt
qi(t) = λi(t)− µi · qi(t). (37)

These results are due to the modified offered load approximation. The band-
width functionB(t) is a continuous function of time. Service discipline as-
sumptions need to be made as in the single class case. During times of capacity
reduction customers hold their resources until their job is complete. Also during
this period no new customers of that class are admitted for service. Figure 6 is
the state space transition diagram for a system with two classes of customers.
It is assumed that class 2 customers request more bandwidth,bi, than the first
class. This figure defines four distinct type of states: nonblocking states, class
2 blocking states, class 1 and 2 blocking states and ghost states. If the system is
in a nonblocking state then a transition to and from a state due to an arrival or a
service is allowed for both classes. While in a class 2 blocking state, transitions
from these states due to an arrival of a class 2 customer is not permitted. In the
class 1 and 2 blocking states transitions from these states due to an arrival of a
class 1 or class 2 customer is not permitted. In the ghost states a transition due
to an arrival of either class into the ghost state is forbidden. Only a transition
due to a service is allowed in ghost states.
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non−blocking

states

b
2  blocking

states only

b
1  and b

2

blocking
states 

ghoststates

b
1  x + b

2  y = B(t) − b
2

b
1  x + b

2  y = B(t) − b
1

b
1  x + b

2  y = B(t) 

b
1  x + b

2  y = B
max

n2

n1

= state (n 1,n2) 

= arrival transitio ns

= service transitio ns

Figure 6. State transition diagram for the two-class case.

Before we conclude this section, we state for completeness the general mul-
tiple class bandwidth version of the pricing problem. Given the desired QoS
probability of blockingεi for each classi requestingbi units of bandwidth and
given the amount of bandwidthB, what is the largest offered loadqi that yields
a QoS blocking probability less thanεi? An approximate algorithm for solving
this problem is explored in the paper Hampshire, Massey and Wang [4].

3. Numerical Results

Numerical results are given for the provisioning problem with two customer
classes. These two classes may have time varying arrival functions. The provi-
sioning problem is solved to determine the amount of bandwidthB(t) needed
at any given time. Next we use this prescribed bandwidth at timet to formulate
the “exact” Markovian loss model. Then at each time step numerically inte-
grate the forward equations for this model and compute the transient blocking
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probabilities. Once the blocking probabilities are computed we compare them
to their respective QoS bounds.

The numerical example consists of two heterogenous customer classes. Let
customers of the first class arrival according to a Poisson process with mean
rateλ1(t) = 30, requesting 20 units of bandwidth and desiring no more then 4
percent blocking . Customers of second class arrive according to a nonhomoge-
neous Poisson process with mean rateλ2(t) = 40+10 sin(2πt/80), requesting
5 units of bandwidth and desiring no more than 1 percent blocking.

For the numerical results presented, the planning horizon is 80 time units.
It is assumed that the customer holding times are mutually independent and
exponentially distributed with the mean of a single time unit.

The bandwidth function,B(t), is a continuous function of time. In practice,
a service provider changes the size of the network only at discrete times. The
intervals on which the size of the network is held constant are called provisioning
periods. The amount of bandwidth allocated over a provisioning period is the
maximum ofB(t) over that provisioning interval. The provisioning periods
can be made to be finer and finer. Thus as the provisioning period becomes
infinitesimally small, the continuous provisioning solution is obtained.

The two period provisioning scenario is considered first. The top graph in
Figure 7, is a plot of the transient blocking probabilities computed by numeri-
cally integrating the forward equations for the Markovian loss model with ghost
states. The lower graph is a plot of the provisioning solutionB(t) which we use
to compute the discrete approximation ofB(t) for exactly two provisioning pe-
riods. Notice at time 40 the apparent discontinuity in the blocking probabilities
is reality a discontinuity of thederivativeof the blocking probabilities, which
are actually continuous functions of time. This phenomena is due to the genera-
tion of ghost states. At time 40, the amount of provisioned resources decreases
instantaneously. This activates the non-preemptive service assumptions, thus
blocking arrivals of new requests. Now compare the transient blocking prob-
abilities to the QoS targets. It is seen that the transient blocking probabilities
are in reasonable range of the targets. As the number of provisioning periods is
increased, the transient blocking probabilities are closer to the QoS targets. In
Figure 8, we consider the case of eight provisioning periods. The derivative dis-
continuities in the blocking probabilities are caused by the generation of ghost
states. The reasoning follows from above. Finally, turning to the continuously
provisioned system, the transient blocking probabilities approach the desired
QoS requirement for each class.

4. Summary

We have presented three canonical problems that arise from the Erlang loss
model. These problems have a natural interpretation for a network service
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Figure 7. Two period provisioning example.

provider. The QoS problem is a classical problem that Erlang addressed in
1917. The pricing problem is the topic of another paper [4]. Much of this paper
was dedicated to solving the provisioning problem. An asymptotic provisioning
solution for a system offering multiple services was presented. A numerical
example was also given in which there were two types of services and non-
stationary demand for the services. It was observed that this provisioning
methodology performs as desired. The provisioning solution is a result of an
asymptotic scaling of the offered load. Therefore, we expect more desirable
results as the demand for services increases. In the numerical example we
assumed that the service time distributions were exponential. We should note
that our provisioning solution is also valid for phase-type service distributions,
where the mean offered load satisfies a system ofn differential equations where
n is the number of phases.

The provisioning solution is a planning tool for a network service provider
that is offering multiple differentiated services that each have unique QoS guar-
antees. The bandwidth function,B(t), can be used as schedule for capac-
ity management. Our methodology for computing the provisioned bandwidth
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Figure 8. Eight period provisioning example.

schedule is lightweight and computationally inexpensive. This is because the
function ψ can be simply computed from a lookup table. Therefore we can
compute the provisioning schedule in realtime given forecasted demand for
the services. The ability to compute the provisioning solution in realtime is a
valuable property of our methodology.
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