
Scheduling Algorithms for Downlink
Services in Wireless Networks:

A Markov Decision Process Approach

William A. Massey
ORFE Department

Engineering Quadrangle, Princeton University
Princeton, NJ 08544

K. G. Ramakrishnan, M. Aravamudan and G. Pai
Motorola Inc.

3 Highwood Drive
Tewksbury, MA 01876

Abstract - We model the scheduling of emerging wireless
data services as a Markov decision process. These services
are characterized by real-time downlink data transfers
such as those needed for personalized traffic, weather and
business updates. Characterizing each differing service
by its own time-criticality as well as reward and penalty
values, we can numerically compute an optimal Markov
decision scheduling rule for serving these requests. These
computations suggest that we can formulate a simple,
near optimal rule for scheduling these services efficiently.

Keywords: Markov Decision Processes, 3G-Wireless, Cog-

nitive Radio, Optimal Scheduling.

I. INTRODUCTION

This paper proposes both a mathematical model and a
scheduling algorithm for emerging new services in current day
wireless networks. These services can be called personalized,
push technology services. A typical example will illustrate our
model. Imagine an application server for a regional wireless
network that knows the current traffic flows in the major high-
ways. A customer can subscribe to this traffic update service,
by specifying a personalized profile–call this myTraffic–of the
congestion levels for the highways that the customer is inter-
ested in knowing. When starting the morning commute in the
car, the customer initiates a request to know the current traf-
fic flows. The application server gets the request, processes it
according to a scheduling algorithm, and downloads the in-
formation to the customer’s mobile device. The application
server needs to service this request quickly, as the traffic pat-
terns are time sensitive. If the application server is unable to
service this job within a certain time, then the job is aborted
and a penalty value accrues. If the application server is able
to honor the request, then a revenue value accrues. Thus the
problem parameters are:

1. The arrival rate of such requests.

2. The time-criticality of the response.

3. The revenues (penalties) for servicing (aborting) re-
quests.

4. The amount of CPU time that the request takes to be
processed. This depends on the nature of the customer’s
personal profile, and added features of the service, such
a suggesting alternate routes.

In modelling this problem, we are not concerned with the sys-
tem by which the server updates its knowledge base. This is
an interesting problem of data acquisition, but not the subject
of this paper. We assume that the application server always
has an up-to-date knowledge base. The system is stochastic
because of the random nature of arrivals and varying ser-
vice time requirements. If the application server is process-
ing only one type of request, say myTraffic, then one can
easily devise an optimal scheduling policy, which is just to
do first-come-first-served (FCFS). But if there are multiple
such services (myBusiness, myWeather, etc.), each with its
own reward/penalty/time-criticality characterizations, then
the optimal policy is not immediately obvious. The prob-
lem that we are addressing in this paper is to find an optimal
scheduling policy that maximizes the expected revenue for the
wireless service provider, given a multiplicity of services.

It should be emphasized that our scheduling algorithm
works at the application level. This scheduling has to be
consistent with the scheduling and rate allocation at the link
level. For this consistency reason, our model has to interact
with the protocols like HSDPA and 1x-Ev-Dv (see [4] and [5])
in a collaborative manner. We do not address this interaction
in this paper.

The services we consider are all “downlink” services; i.e.,
the network has the knowledge base, and pushes the data
down to the customer’s end device. The push can be initi-
ated by the customer or automated to happen when certain
other events happen. There are interesting applications in
the “uplink” services, where the data is uploaded from the
end device to the network. A typical example of an uplink
service is a “picture upload” service. All current day mobile
phones are equipped with digital cameras. After the picture
is taken, a customer can request an upload of the picture
to the network. Based on the completion time and the size
of the upload, revenue accrues to the service provider. The
scheduling problem is to schedule the picture uploads so as to

0-7803-8794-5/04/$20.00 (C) 2004 IEEE

maximize the accrued revenue. We do not address “uplink”
services in this paper.

The above services are examples of “cognitive radio” ser-
vices, which was introduced by J. Mitola [6] in 1999. In that
Ph.D. dissertation, Mitola describes a detailed software archi-
tecture and language to describe such service applications.

Markov decision processes (MDP) are a special class of dy-
namic programming models, which were originally proposed
by Bellman [3] to solve a deterministic n-step optimization
problem using a recursive algorithm. MDP is dynamic pro-
gramming under uncertainty, where the actual transitions and
their rewards are probabilistic. A recursion, similar to deter-
ministic dynamic programming, is developed to solve for the
expected maximum or minimum. MDP has been extensively
used in developing admission control policies in computer and
communication systems, see Mitra, Reiman, and Wang [7] as
well as examples in Ross [8].

The MDP-based optimization approach, while mathemat-
ically elegant, poses a formidable computational challenge.
One has to walk through the state space of the system being
modelled to evaluate the optimal solution. For real-time sys-
tems, we need a quick and easy way to make a decision tran-
sition, based only on the current state of the system. This
is possible only if there is a closed-form solution to the MDP
system being analyzed. In a seminal result on MDP, the cµ-
rule (see Bertsekas [1]) is an optimal closed-form solution to
a queueing system. The cµ-rule is simple to state and easy
to implement. The optimal rule states that “Among the cur-
rently waiting customers to be served, pick the one with the
largest product of revenue and its service rate.” One of the
first references to this rule can be found in Cox and Smith [2]
in the context of optimizing a priority queue.

We propose a similar rule of scheduling for our application
server which can be implemented in real time. Unlike the
system analyzed in the cµ-rule, our application is more com-
plicated, and the cµ-rule does not directly apply. The compli-
cation is due to the penalty for abandonment of a customer
because of the waiting time exceeding a certain value. This
reward for service but penalty for abandonment paradigm
makes the MDP harder to analyze. However, as described
in the computational results section, many computational re-
sults on various systems point to a conjecture that is similar to
the cµ-rule, in the interior of the state space. On the bound-
aries, a threshold policy seems to be optimal for a restricted
set of cases.

The outcome of our research is a scheduling policy for down-
link scheduling, that can be stated as follows:

1. Statically order the classes in ascending order of the met-
ric, rµ+ βs, where r is the revenue for serving the job in
a class, µ is the average service rate, s is the magnitude
of the penalty for abandonment (a positive number), and
β is the abandonment rate.

2. When a server becomes free, and all job queues are non-
empty, serve the job with the largest class index (largest

rµ + βs).

The paper is organized as follows. Section II describes the
MDP system and develops the recursion formulas. Section
III describes the computational results. Section IV proposes
the optimal policy conjectures as stated above, and section V
offers concluding remarks.

II. MARKOV DECISION MODEL

To specify the MDP system, we first define {X(t) | t ≥ 0 }
to be a continuous time Markov chain

X(t) = (Q1(t), C1(t), . . . , QK(t), CK(t)) , (1)

where Qi(t) equals the number of class i customers that are
waiting to be served (i.e. in the queue) at time t and Ci(t)
equals the number of class i customers that are being served
at time t. The range for the index i is 1, 2, . . . ,K where K
equals the total number service classes.

If S equals the set of states for this process, then each σ ∈ S
is of the form

σ = (q1, c1, . . . , qK , cK), (2)

where the qi and ci are non-negative integers. Moreover, these
states satisfy the following constraint:

K∑
i=1

ci ≤ cmax. (3)

This simply means that our queueing system has no more
than cmax servers.

Now let Π be the set of partial transitions which correspond
to events that happen outside the control of the application
server. These transitions are followed instantaneously by a
decision transition which is in the control of the application
server. Together, they form a single step transition for this
Markov process. The partial transitions can be described as
follows:

1. Arrival of a class i customer:

qi −→ qi + 1. (4)

The time between such arrival partial transitions are ex-
ponentially distributed with rate λi.

2. Abandonment by a class i customer:

qi −→ qi − 1 (5)

We define the abandonment time, that a class i customer
waits for service, to be exponentially distributed with
rate βi. Since we assume that these customers act in-
dependently of each other, then the times between aban-
donment partial transitions are exponentially distributed
with rate qiβi. Note that this automatically guarantees
that no such transition will occur when qi = 0.

0-7803-8794-5/04/$20.00 (C) 2004 IEEE

3. Service completion for a class i customer:

ci −→ ci − 1. (6)

We define the time that a class i customer spends in ser-
vice is exponentially distributed with rate µi. Since we
assume that these customers act independently of each
other, then the time between such service partial transi-
tions are exponentially distributed with rate ciµi. This
automatically guarantees that no such transition will oc-
cur when ci = 0.

Consider the two class case K = 2. The above transitions
are partial ones for the following reasons. It is appropriate
to assume that no decision affects the rate of new customers
arriving to acquire a specific service. Customers in queue may
tire of waiting for service and then choose to abandon the
system solely on the basis of how long their wait has been.
Finally, we assume that customers in service will complete
their task independently of any decision made.

Given a state σ, the time until some partial transition α oc-
curs is exponentially distributed with rate

∑
i∈K λi + qiβi +

ciµi. Let pσ(α) equal the probability that this partial tran-
sition equals α. If α is the partial transition for a class i
customer arrival, then

pσ(α) =
λi∑

j∈K (λj + βjqj + µjcj)
. (7)

If α is the partial transition for a class i customer abandon-
ment, then

pσ(α) =
qiβi∑

j∈K (λj + βjqj + µjcj)
. (8)

Finally, if α is the partial transition for a class i customer
service completion, then

pσ(α) =
ciµi∑

j∈K (λj + βjqj + µjcj)
. (9)

To describe the decision transitions, we let ∆(σ, α) equal
the set of decision states for the current state σ and partial
transition α, where ∆(σ, α) ⊆ S. These partial transitions be-
come complete single step transitions for our Markov process
once we specify the corresponding decision transition. The
general nature of these decision transitions is to determine
which current customer in the queue should now enter service
(if a server is free).

Let rσ(α) be the general reward at state σ where the next
partial transition is α. For our model, rσ(α) = 0 if α is any
arrival partial transition and rσ(α) = −si, where si > 0, is a
penalty if α is an abandonment partial transition for a class
i customer with qi > 0. However, rσ(α) = ri > 0 is a reward
if α is a service completion partial transition for a class i
customer with ci > 0.

Given n transition steps for our Markov process, we de-
fine our maximal value function vσ(n) to be the sum of the

rewards (or penalties) made at the n sequential, partial tran-
sition steps, following the initial state σ, that achieves the
maximum expected revenue.

To make these transitions, we need to couple each partial
transition with a decision one to select the next state. We
define δ(σ, α, n) ∈ ∆(σ, α) to be the transition decision rule
given n remaining steps following a partial transition step
that is α and the state before these transitions is σ. We now
make the following modelling assumptions for our decision
transitions:

• Partial transitions do not depend on the past history or
the next set of decision states.

• Rewards for partial transitions do not depend on the past
history or the next set of decision states.

• New decision transitions are based only on the current
state and transition.

• New decision transitions are only influenced by the cur-
rent state, the current partial transition, and the number
of remaining transitions.

The decision transition gives us our new transition state.
Given a partial transition α occurring at state σ, we “decide”
to select a new state τ with probability pδ

σ(τ |α). For a given
policy, these decisions are deterministic and so with probabil-
ity one, we have τ = δ(σ, α, n) if there are n-transition steps
remaining. If pδ

στ equals the one step transition probability
that takes us from state σ to state τ , then we have

pδ
στ =

∑
α∈Π

pδ
σ(τ |α)pσ(α). (10)

Now we define vσ(n) to be the maximal value function over
all policies as described above by the recursion relation

vσ(0) = 0

vσ(n + 1) =
∑

α∈Π

pσ(α) ·
(

rσ(α) + max
τ∈∆(σ,α)

vτ (n)
)

.

Note that this MDP formulation differs from similar recursion
equations found in Ross [8]. This is due to the fact that we
have a partial transition that is decision independent and is
occuring before the decision transition, which corresponds to
the probability pσ(α). On the other hand, it is these partial
transitions that dictate the next immediate reward.

The optimal decision rule simply defines δ(σ, α, n) to be
that state that satisfies the equation

vδ(σ,α,n)(n) = max
τ∈∆(σ,α)

vτ (n).

III. NUMERICAL RESULTS

We now implement the recursion algorithm and conduct
numerical experiments with different classes and randomly
generated parameters for these classes. For brevity, we sum-
marize these results using two examples whose parameters

0-7803-8794-5/04/$20.00 (C) 2004 IEEE

Table 1: Problem parameters for the 2-class problem. Num-
ber of servers = 10.

Class Arrival Service Aband. Revn. Penl.
ID Rate λ Rate µ Rate β r s

jobs/sec jobs/sec jobs/sec $/job $/job
1 94.0 30.0 4.0 55.0 291.0
2 96.0 158.0 88.0 38.0 90.0

Table 2: Problem parameters for the 3-class problem. Num-
ber of servers = 10.

Class Arrival Service Aband. Revn. Penl.
ID Rate λ Rate µ Rate β r s

jobs/sec jobs/sec jobs/sec $/job $/job
1 45.0 3.0 18.0 8.0 5.0
2 52.0 36.0 29.0 1127.0 23.0
3 22.0 97.0 43.0 1191.0 144.0

are given in Tables 1 and 2. Both examples have 10 servers
available for serving jobs. We now partition the state space of
the system into two parts: the strict interior and the bound-
ary. The boundary corresponds to states where some classes
of customers are absent from at least one of the queues.

A. Results for the Interior State Space for the 2-Class Problem

The interior space is characterized by non-empty queues
where either all servers are busy or one or more servers is
free. Table 3 shows the optimal policy decisions made for the
2-class problem, a typical interior state, and increasing time
horizons. The state is (10, 8, 10, 1). When the partial transi-
tion is listed in the left column, we describe the corresponding
decision transitions in every other column for that same row.
We use the convention of having A++ denote the addition of
a single customer to either the number of class i customers in
queue or in service. Similarly, A−− denotes the deletion of a
single customer from either the number of class i customers
in queue or in service. When there is decision to make no
changes to the state, we either do not list the corresponding
partial transition or we denote this as a null event ∅.

It is apparent that the optimal policy is to give the server
to class 2 and always queue a class 1 job whenever there is
a free server and there is a waiting or arriving class 2 job.
Identical results were obtained for other interior states. Time
horizons larger than 20 steps were not studied because of the
prohibitive computational burden.

B. Results for the Boundary States of the 2-Class Problem

Table 4 shows the optimal policies when the class 2 queue
is empty. The optimal policy seems to be that the free servers

Table 3: Optimal decisions in the interior states for the 2-class
problem.

Optimal Decisions for
Partial State (10, 8, 10, 1)

Transition Time Horizons
5 10 15 20

Any Arrival or Any Q−−
2 Q−−

2 Q−−
2 Q−−

2

Service Completion C++
2 C++

2 C++
2 C++

2

Table 4: Optimal decisions in the boundary states for the
2-class problem.

Optimal Decisions for
Partial State (Q1, 8, 0, 1)

Transition Q1 Values
0 10 20 40 60

Class 1 Arrival ∅ ∅ ∅ Q−−
1 Q−−

1

C++
1 C++

1

Class 2 Arrival Q−−
2 Q−−

2 Q−−
2 Q−−

2 Q−−
2

C++
2 C++

2 C++
2 C++

2 C++
2

Any Service ∅ ∅ ∅ Q−−
1 Q−−

1

Completion C++
1 C++

1

are kept in reserve for class 2 arrivals up to a point of class
1 queue build up. When class 1 queue size is beyond 20,
then the policy switches to giving the free server to class 1.
This threshold policy trades off the penalty of abandonment of
class 1 jobs with the potential future revenues of class 2 jobs.

C. Results for the Interior and Boundary State Space of the
3-Class Problem

Table 5 shows the results in the interior and boundary space
of the 3-class problem. Results are shown for the interior
queueing state (10, 10, 10) as well as the two boundary queue-
ing states (10, 0, 10) and (10, 10, 0). The queueing state here
is a 3-tuple that indicates the queue sizes and a service state
is defined in a similar manner. All the queueing states here
have the same service state (4, 3, 3). It is again interesting to
note that the policy gives the next available server to the job
with the largest class index. Note that in the last column,
where class 3 has an empty queue, it is class 2 that now gets
the priority to be served, since class 2 has the second largest
index. Abandonment events are not shown since no decision
is made for these events.

IV. CONJECTURED OPTIMAL POLICY

The computational experiments suggest an optimal policy
in the interior and boundary states. If we compute the metric
rµ + βs for each class, then the job classes are ordered in
ascending order of their metric, both for the 2 and 3 class

0-7803-8794-5/04/$20.00 (C) 2004 IEEE

Table 5: Optimal decisions in the interior and boundary state
space for the 3-class problem.

Optimal Decisions for the
Partial Case of c1 = 4, c2 = 3 and c3 = 3

Transition Queueing State Space q1, q2, q3

(10, 10, 10) (10, 0, 10) (10, 10, 0)
Any Service Q−−

3 Q−−
3 Q−−

2

Completion C++
3 C++

3 C++
2

examples shown above. Table 3 shows the transitions in the
interior of the state space (all queues non-empty) and it is
clear that the optimal policy is to place the job with the largest
rµ + βs in service when a server becomes free. Interestingly,
this same optimal policy is also exhibited in the boundary
states where all but one queue are non-empty, as shown in
Table 5 for the 3 class problem. Table 4 however, exhibits a
threshold policy in the boundary states which is discussed in
Section III.B. The conjectured optimal scheduling policy is:

1. For all interior states, place the job with the highest rµ+
βs in service.

2. For all boundary states, where some queues are empty,
adopt a threshold policy where the threshold values are
to be determined.

It remains to prove this conjecture rigorously in a general
framework.

V. CONCLUSIONS

We model emerging downlink wireless data services using
Markov decision processes and propose an efficient schedul-
ing algorithm that maximizes the expected revenue for the
service provider. The model takes into account the revenue,
penalty, and time sensitivity of data to be downloaded to the
customer’s end device. The decision algorithm exhibits an
optimal policy in the interior state space that is an extension
of the classical cµ-rule to serve the customer class with the
largest sum of the product of the revenue and the service rate
plus the product of the penalty and the abandonment rate.
The optimal policy for the boundary states requires further
investigation.

References

[1] D. P. Bertsekas, Dynamic Programming and Optimal
Control, Volume Two, Athena Scientific, 1995.

[2] D.R. Cox and W.L. Smith, Queues, 1961, London:
Methuen & Co. Ltd.

[3] R. Bellman, Dynamic Programming, 1957, (Dover Edi-
tion, 2003).

[4] HSDPA and 1xEv-Dv Harmonization Opportunities,
3GPP-3GPP2 Joint Meeting on Harmonization of High
Speed Data Services, Nov 13-14, 2001, www.3gpp.org.

[5] J. Korhonen, Introduction to 3G Mobile
Communications-2nd Edition, Artech House Inc.,
Norwood, MA, 2003.

[6] J. Mitola, Cognitive Radio-Model-based Competence for
Software Radios, Licentiate Thesis (Stockholm KTH),
September 1999.

[7] D. Mitra, M. I. Reiman and J. Wang, Robust Admis-
sion Control for Heterogeneous ATM Systems with Both
Cell and Call QoS Requirements, in Teletraffic Contri-
butions for the Information Age, Proc. ITC-15, eds. V.
Ramaswami, P.E. Wirth, North Holland, Amsterdam,
pp. 1421–1432.

[8] S. M. Ross, Introduction to Stochastic Dynamic Program-
ming, Academic Press Inc., 1983.

0-7803-8794-5/04/$20.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

